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BIG DATA CHALLENGES 
AND ADVANCED COMPUTING SOLUTIONS 

THURSDAY, JULY 12, 2018 

HOUSE OF REPRESENTATIVES, 
SUBCOMMITTEE ON ENERGY AND 

SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY, 
COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY, 

Washington, D.C. 

The Subcommittees met, pursuant to call, at 10:15 a.m., in Room 
2318, Rayburn House Office Building, Hon. Randy Weber [Chair-
man of the Subcommittee on Energy] presiding. 
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• Dr. Katherine Yeliek, Associate Laboratory Director for Computing Sciences, Lawrence 
Berkeley National Laboratory; Professor, The University of California, Berkeley 
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Chairman WEBER. The Committee on Science, Space, and Tech-
nology will come to order. 

Without objection, the Chair is authorized to declare recess of the 
Subcommittees at any time. 

Good morning, and welcome to today’s hearing entitled ‘‘Big Data 
Challenges and Advanced Computing Solutions.’’ I now recognize 
myself for five minutes for an opening statement. 

Today, we will explore the application of machine-learning-based 
algorithms to big-data science challenges. Born from the artificial 
intelligence—AI—movement that began in the 1950s, machine 
learning is a data-analysis technique that gives computers the abil-
ity to learn directly from data without being explicitly pro-
grammed. 

Generally speaking—and don’t worry; I’ll save the detailed de-
scription for you all, our expert witnesses—machine learning is 
used when computers are trained—more than husbands are 
trained, right, ladies—on large data sets to recognize patterns in 
that data and learn to make future decisions based on these obser-
vations. 

Today, specialized algorithms termed ‘‘deep learning’’ are leading 
the field of machine-learning-based approaches. These algorithms 
are able to train computers to perform certain tasks at levels that 
can exceed human ability. Machine learning also has the potential 
to improve computational science methods for many big-data prob-
lems. 

As the Nation’s largest federal sponsor of basic research in the 
physical sciences with expertise in big-data science, advanced algo-
rithms, data analytics, and high-performance computing, the De-
partment of Energy is uniquely equipped to fund robust funda-
mental research in machine learning. The Department also man-
ages the 17 DOE national labs and 27 world-leading scientific user 
facilities, which are instrumental to connecting basic science and 
advanced computing. 

Machine learning and other advanced computing processes have 
broad applications in the DOE mission space from high energy 
physics to fusion energy sciences to nuclear weapons development. 
Machine learning also has important applications in academia and 
industry. In industry, common examples of machine-learning tech-
niques are in automated driving, facial recognition, and automated 
speech recognition. 

At Rice University near my home district, researchers seek to 
utilize machine-learning approaches to address challenges in geo-
logical sciences. In addition, the University of Houston’s Solutions 
Lab supports research that will use machine learning to predict the 
behavior of flooding events and aid in evacuation planning. This 
would be incredibly beneficial for my district and all areas that are 
prone to hurricanes and to flooding. In fact, in Texas we’re still re-
covering from Hurricane Harvey, the wettest storm in United 
States history. 

The future of scientific discovery includes the incorporation of ad-
vanced data analysis techniques like machine learning. With the 
next generation of supercomputers, including the exascale com-
puting systems that DOE is expected to field by 2021, American re-
searchers utilizing these technologies will be able to explore even 
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bigger challenges. With the immense potential for machine-learn-
ing technologies to answer fundamental scientific questions, pro-
vide the foundation for high-performance computing capabilities, 
and to drive future technological development, it’s clear that we 
should prioritize this research. 

I want to thank our accomplished panel of witnesses for their 
testimony today, and I look forward to hearing what role Congress 
should play in advancing this critical area of research. 

[The prepared statement of Chairman Weber follows:] 
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Big Data Challenges and Advanced Computing Solutions 

Chairman Weber: Good morning and welcome to today's joint Energy and Research and 
Technology Subcommittee hearing. Today, we will explore the application of machine 
learning-based algorithms to big data science challenges. 

Born from the Artificial Intelligence (AI) movement that began in the 1950s, machine learning 
is a data analysis technique that gives computers the ability to learn directly from data 
without being explicitly programmed. 

Generally speaking, and don't worry I'll save the detailed description for our expert 
witnesses, machine learning is used when computers are "trained" on large data sets to 
recognize patterns in that data, and learn to make future decisions based on these 
observations. 

Today, specialized algorithms termed "deep learning" are leading the field of machine 
learning-based approaches. These algorithms are able to train computers to perform certain 
tasks at levels that can exceed human ability. Machine learning also has the potential to 
improve computational science methods for many big data problems. 

As the nation's largest federal sponsor of basic research in the physical sciences, with 
expertise in big data science, advanced algorithms, data analytics and high performance 
computing, the Department of Energy (DOE) is uniquely equipped to fund robust 
fundamental research in machine learning. 

The Department also manages the 17 DOE national laboratories and 27 wortd-leading 
scientific user facilities, which are instrumental to connecting basic science and advanced 
computing. 

Machine learning and other advanced computing processes have broad applications in 
the DOE mission space: from high energy physics to fusion energy sciences to nuclear 
weapons development. 

Machine learning also has important applications in academia and industry. In industry, 
common examples of machine learning techniques are in automated driving, facial 
recognition and automated speech recognition. 

At Rice University near my home district, researchers seek to utilize machine learning 
approaches to address challenges in geological sciences. In addition, the University's 
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Houston Solutions Lab supports research that will use machine learning to predict the 
behavior of flooding events and aid in evacuation planning. This would be incredibly 
beneficial for my district and all areas prone to hurricanes and flooding. In Texas, we are still 
recovering from Hurricane Harvey-the wettest storm on record! 

The future of scientific discovery includes the incorporation of advanced data analysis 
techniques like machine learning. 

With the next generation of supercomputers, including the exascale computing systems that 
DOE is expected to field by 2021, American researchers utilizing these technologies will be 
able to explore even bigger challenges. 

With the immense potential for machine learning technologies to answer fundamental 
scientific questions, provide the foundation for high performance computing capabilities 
and drive future technological development it's clear we should prioritize this research. 

I want to thank our accomplished panel of witnesses for their testimony today and I look 
forward to hearing what role Congress should play in advancing this critical area of 
research. 

### 
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Chairman WEBER. I now recognize the Ranking Member for an 
opening statement. 

Mr. VEASEY. Thank you, Chairman Weber. Thank you, Chair-
woman Comstock, and also, thank you to the distinguished panel 
for being here this morning. 

As you know, there are a growing number of industries today 
that are relying on generating and interpreting large amounts of 
data to overcome new challenges. The new—the energy sector in 
particular is making strides in leveraging these new technologies 
and techniques. Today, we’re going to hear more about the ad-
vancements that we’re going to see in the upcoming years. 

Sensor-equipped aircraft engines, locomotive, gas, and wind tur-
bines are now able to track production efficiency and the wear and 
tear on vital machinery. This enables significant reductions in fuel 
consumption, as well as carbon emissions. The technologies are also 
significantly improving our ability to detect failures before they 
occur and prevent disasters, and by doing so will save money, will 
save time, and lives. And by using analytics, sensors, and oper-
ational data, we can manage and optimize systems ranging from 
energy storage components to power plants and to the electric grid. 

As digital technologies revolutionize the energy sector, we also 
must ensure the safe and responsible use of these processes. With 
our electric grid always in under persistent threats from everything 
from cyber to other modes of subterfuge, the security of these con-
nected systems is of the utmost importance. Nevertheless, I’m ex-
cited to learn more about the value and benefits that these tech-
nologies may be able to provide for our economy and our environ-
ment alike. 

I’m looking forward to hearing what we can do in Congress to 
help guide and support the responsible development of these new 
data-driven approaches to the management of these evermore com-
plex systems that our society is very dependent on. 

Thank you, and, Mr. Chairman, I yield back the balance of my 
time. 

[The prepared statement of Mr. Veasey follows:] 
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Thank you, Chairman Weber and Chairwoman Comstock for holding this hearing today, and 
thank you to this excellent panel of witnesses for being here this morning. 

A growing number of industries today are relying on generating and interpreting large amounts 
of data to overcome new challenges. The energy sector in particular is making strides in 
leveraging these new technologies and techniques. 

Today, we'll hear more about the advancements we'll see in the coming years. Sensor-equipped 
aircraft engines, locomotives, gas turbines, and wind turbines are now able to track production 
efficiency and the wear and tear on vital machinery. This enables significant reductions in fuel 
consumption as well as carbon emissions. 

The technologies are also significantly improving our ability to detect failures before they occur 
and prevent disasters. By doing so, we save money, time, and lives. By using analytics, sensors, 
and operational data, we can manage and optimize systems ranging from energy storage 
components to power plants to the electric grid. 

As digital technologies revolutionize the energy sector, we also must ensure the safe and 
responsible use of these processes. With our electric grid under persistent cyber threats, the 
security of these connected systems is of the utmost importance. Nevertheless, I am excited to 
learn more about valuable benefits that these technologies may be able to provide for our 
economy and our environment alike. 

I look forward to learning about what we in Congress can do to guide and support the 
responsible development of these new data-driven approaches to the management ofthe ever
more-complex systems that our society now depends on. 

Thank you, and I yield back the remainder of my time. 
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Chairman WEBER. Thank you, Mr. Veasey. 
I now recognize the Chairwoman of the Research and Technology 

Subcommittee, the gentlewoman from Virginia, Mrs. Comstock, for 
an opening statement. 

Mrs. COMSTOCK. Thank you, Chairman Weber. 
A couple of weeks ago, our two Subcommittees joined together on 

a hearing to examine the state of artificial intelligence and the 
types of research being conducted to advance this technology. The 
Committee learned about the nuances of the term artificial intel-
ligence, such as the difference between narrow and general AI and 
implications for a world in which AI is ubiquitous. 

Today, we delve deeper into disciplines originating from the AI 
movement of the 1950s that include machine learning, deep learn-
ing, and neural networks. Until recently, machine learning and es-
pecially deep-learning technologies were only theoretical because 
deep-learning models require massive amounts of data and com-
puting power. But advances in high-performance graphics, proc-
essing units, cloud computing, and data storage have made these 
techniques possible. 

Machine learning is pervasive in our day-to-day lives from tag-
ging photos on Facebook to protecting emails with spam filters to 
using a virtual assistant like Siri or Alexa for information. Ma-
chine-learning-based algorithms have powerful applications that ul-
timately help make our lives more fun, safe, and informative. 

In the federal government, the Department of Energy stands out 
for its work in high-performance computing and approaches to big- 
data science challenges. The Energy Department researchers are 
using machine-learning approaches to study protein behavior, to 
understand the trajectories of patient health outcomes, and to pre-
dict biological drug responses. At Argonne National Laboratory, for 
example, researchers are using intensive machine-learning-based 
algorithms to attempt to map the human brain. 

A program of particular interest to me involves a DOE and De-
partment of Veterans Affairs venture known as the MVP–CHAM-
PION program. This joint collaboration will leverage DOE’s high- 
performance computing and machine-learning capabilities to ana-
lyze health records of more than 20 million veterans maintained by 
the VA. The goal of this partnership is to arm the VA with data 
it can use to potentially improve health care offered to our veterans 
by developing new treatments and preventive strategies and best 
practices. 

The potential for AI to help humans and further scientific discov-
eries is obviously immense. I look forward to what our witnesses 
will testify to today about their work and—which may give us a 
glimpse into the revolutionary technologies of tomorrow that we’re 
here to discuss. 

So I thank you, Mr. Chairman, and I yield back. 
[The prepared statement of Mrs. Comstock follows:] 
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Chairwoman Comstock: A couple of weeks ago, our two subcommittees joined together on a 
hearing to examine the state of artificial intelligence (AI) and the types of research being 
conducted to advance this technology. The committee learned about the nuances of the 
term artificial intelligence-such as the difference between narrow and general Al-and 
implications tor a world in which AI is ubiquitous. Today, we delve deeper into disciplines 
originating from the AI movement of the 1950s that include machine learning, deep learning 
and neural networks. 

Until recently, machine learning and especially deep learning techniques were only 
theoretical, because deep learning models require massive amounts of data and computing 
power. But advances in high performance graphics processing units, cloud computing and 
data storage have made these techniques possible. 

Machine learning is pervasive in our day to day lives-from tagging photos on Facebook, to 
protecting emails with spam filters, to using a virtual assistant like Siri or Alexa tor information
machine learning-based algorithms have powerful applications that ultimately help make our 
lives more fun, sate and informative. 

In the federal government, the Department of Energy (DOE) stands out for its work in high 
performance computing and approaches to big data science challenges. DOE researchers 
are using machine learning approaches to study protein behavior. to understand the 
trajectories of patient health outcomes and to predict biological drug responses. At Argonne 
National Laboratory for example, researchers are using intensive machine learning-based 
algorithms to attempt to map the human brain! 

A program of particular interest to me involves a DOE and Department of Veterans Affairs (VA) 
venture known as the MVP-CHAMPION program. 

This joint collaboration will leverage DOE's high performance computing and machine learning 
capabilities to analyze health records of more than 20 million veterans maintained by the VA. 
The goal of this partnership is to arm the VA with data it can use to potentially improve health 
care offered to veterans by developing new treatments and preventive strategies. 

The potential for AI to help humans and further scientific discoveries is immense. I look forward 
to what our witnesses have to say about their work today-which may give us a glimpse into 
the revolutionary technologies of tomorrow. 

### 
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Chairman WEBER. I thank the gentlelady. 
And let me introduce our witnesses. Our first witness is Dr. 

Bobby—Mr. Chairman, are you going to—— 
Chairman SMITH. Mr. Chairman, thank you. In the interest of 

time, I just ask unanimous consent to put my opening statement 
in the record. 

Chairman WEBER. Without objection. 
[The prepared statement of Chairman Smith follows:] 
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lomor Smith, Chairman 

For Immediate Release 
July 12. 2018 

Media Contacts: Heather Vaughan, Bridget Dunn 
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Statement by Chairman Lamar Smith (R-Texas) 
Big Data Challenges and Advanced Computing Solutions 

Chairman Smith: Today we will hear from a panel of experts on a number of big data 
challenges facing the Department of Energy (DOE), academia, and industry, and the 
innovative computing approaches used to address them. 

Recent advances in our ability to store and process information have led to a growth of 
large and complex data sets. At the same time, greater computing power and increasingly 
sophisticated algorithms have allowed for dramatic advances in artificial intelligence and 
machine learning. These tools have powerful applications for challenges with a large 
amount of data on which to train computing systems. 

Machine learning is a practice in which computers not only analyze data. but then use that 
analysis and data to refine and enhance future predictions. Essentially, it gives computers 
the ability to learn directly from data without being explicitly programmed. 

This advanced technology is already creating tremendous developments in many fields 
including medicine. manufacturing and finance. 

Whether it's protecting your credit card from fraudulent activity to helping you find the 
fastest way to work. we all benefit from machine learning every day. 

Machine learning is especially valuable when analyzing big data. As the nation's largest 
federal supporter of basic research in the physical sciences. DOE is well suited to develop 
and apply machine learning across its research portfolio. 

DOE funds robust programs in advanced scientific computing and applied mathematics. 
and hosts the fastest supercomputers in the world at DOE national labs. The Department also 
funds research in a wide range of scientific disciplines-from physics and chemistry. to 
materials science and biology. 

DOE has a specific research need to address big data challenges and is uniquely positioned 
to advance machine learning-based approaches to solving these challenges. 

For example. machine learning-based algorithms have the ability to revolutionize material 
science research. The discovery of new materials has been instrumental to many recent 
advancements in carbon capture. battery and solar cell technologies. At Lawrence 
Berkeley National Laboratory and at SLAC National Accelerator Laboratory, researchers are 
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utilizing machine learning-based approaches to shorten the timeline of the materials 
discovery process. 

Machine learning is also particularly useful in the biological and biomedical sciences. In 
many of these areas, like the study of microbial data, the behavior of proteins, and even 
patient care, we have the potential to rnake significant scientific progress by using detailed 
analysis of large amounts of data. 

At Argonne National Laboratory, researchers have a plan to create a 3D map of neurons in 
the human brain. By utilizing the imaging power of the Advanced Photon Source, and the 
leadership computing facility at Argonne, researchers can collect and fit together millions of 
high resolution images of mammal brains to reconstruct their complex structures and 
characterize their behavior. I look forward to hearing more about this exciting area of 
research today. 

American universities are also taking advantage of machine learning-based approaches to 
big data challenges. At Carnegie Mellon University's NextManufacturing Center. researchers 
have focused on how to combine 3D printing and machine learning to monitor the quality of 
manufactured components in real-time. 

These are just a few of the issues already being addressed by machine learning. Continued 
development will allow us to address more complex challenges and advance scientific 
discovery. 

With new exascale and quantum computing systems, more big data challenges will be 
within our reach. We must continue to support the research in applied mathematics and 
computer science that will help develop the next generation of computing tools. 

I thank the witnesses for their testimony and look forward to a valuable discussion of this 
important science today. 

### 
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[The prepared statement of Ranking Member Johnson follows:] 

OPENING STATEMENT 
Ranking Member Eddie Bernice Johnson (D-TX) 

House Committee on Science, Space, and Technology 
Subcommittee on Energy 

Subcommittee on Research and Technology 
"Big Data Challenges and Advanced Computing Solutions" 

July 12,2018 

I'd like to thank Chairman Weber, Ranking Member Veasey, Chairwoman Comstock, and 
Ranking Member Lipinski for holding this hearing, and thank you to our witnesses for being here 
this morning. 

As highlighted in our previous Committee hearing on this topic last month, artificial intelligence 
has potentially powerful applications for a wide range of industries. In the energy sector, these 
technologies are currently gaining traction by providing efficient and innovative ways to 
optimize the use, production, and distribution of energy resources. 

When many people think of artificial intelligence, they think of science fiction movies and 
technologies that are far in the future, but in truth, they are already playing a significant role in 
our lives today. With the rise of what is being called big data, artificial intelligence is playing an 
even more important role. The amount of data available is quickly becoming far too large to be 
handled by human workforces in a timely fashion, creating the need for machine driven 
solutions. 

One of the topics we are discussing today is called Machine Learning. Machines are being 
trained to be able to "learn" from data, and then automatically perform meaningful tasks based 
on that analysis. There are many potential benefits to machine learning. It will simplify and 
expedite many processes as well as improve safety across various sectors. And it will allow our 
workforce to focus on more critical thought-based problems that a computer simply can't do. 
While STEM education is not a focus of this hearing, the hearing topic does remind us of the 
critical importance of improving STEM learning and access to quality STEM education at all 
levels. The kinds of good-paying jobs that were once a ticket into the middle class with just a 
high school diploma are going away, and artificial intelligence is one factor in this changing 
economy. 

Attention to the benefits and risks of artificial intelligence can be seen across private industry, 
government agencies, and in academic research. With the ability to enhance and streamline 
energy production, utility companies look to these technologies as a way to increase efficiency as 
well as safety throughout their operations. As we'll hear more about in the testimony we receive 
this morning, agencies such as the Department of Energy are incorporating machine learning into 
materials and biomedical research through our universities and national laboratories. Its use 
offers the promise that it can lead to previously unattainable innovations that will save us time, 
money, and even lives in the not-too-distant future. 
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However, as more data comes in, we must also ask where this data is coming from and what the 
risks may be as we increasingly rely on machine learning. For example, we must consider how 
the data is distributed, processed, analyzed. And- when the data includes sensitive information 
relevant to our security or the privacy of our citizens how it is being protected. Other questions 
policy makers must ask are who is benefitting from this data, and what concerns should we have 
about the amount and quality of data being produced. Finally, as I mentioned previously, we 
must consider the workforce that will be necessary to take advantage of, as well as mitigate the 
risk of all aspects of big data. These are questions that I'm sure our witnesses today can provide 
some further insight into. It is our duty within this Committee to not only examine how these 
technologies will benefit us, but to also contemplate what new challenges will emerge as well. 

I look forward to learning more about what we in Congress can do to responsibly support the 
development and use of these breakthrough technologies. Lastly, before I close, I would like to 
welcome the visiting interns from the American Institute of Physics who are here with us this 
morning. I hope you all enjoy this experience, and it inspires you to stay engaged throughout 
your careers on the many important science policy issues that we'll all need your help in 
addressing. And with that I yield back. 
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[The prepared statement of Mr. Lipinski follows:] 

OPENING STATEMENT 
Ranking Member Daniel W. Lipinski (D-IL) 

of the Subcommittee on Research and Technology 

House Committee on Science, Space, and Technology 
Subcommittee on Energy 

Subcommittee on Research and Technology 
"Big Data Challenges and Advanced Computing Solutions" 

July 12, 2018 

Thank you, Chairman Weber and Chairwoman Comstock, for holding this hearing to explore the 

impact of machine learning-based approaches to big data science challenges at the Department of 
Energy, in academia, and in industry. 

During a hearing last month, this committee heard from expert witnesses about the state of 
artificial intelligence and machine learning technology. That hearing was an opportunity to 

understand the history of AI and machine learning and their current and future impact on society, 
including jobs, the economy, and workforce needs. Today's witnesses will expand on machine 
learning solutions for challenges faced by the energy industry. 

The energy industry is turning to applications of machine learning to help improve power 
generation, transmission and distribution, exploration of oil and gas resources, and materials 
characterization. Companies such as GE are already using data-driven predictive analytics to 
reduce their fuel consumption and lower their carbon footprint. The data produced by sensors 
and analyzed by sophisticated software allow for better matching of supply and demand, more 
efficient operation of the grid, and better integration of new technologies such as renewable 
energy generation and electric vehicles. In addition to the private sector, the federal government 
has made longstanding investments in artificial intelligence and data science research to grow 
our national machine learning capabilities, many of which can be applied to energy grid 
resiliency efforts. Experts have warned of the disastrous consequences of a natural or man-made 
attack on the grid. Tlu·ough its Grid Modernization Initiative, the Department of Energy is 
working with public and private sector partners to develop technologies, including big data and 
machine learning, needed to meet current and future demands on the energy grid. And through 
the National Labs, represented today by Dr. Kasthuri from Argonne National Lab in my district, 
the Department of Energy has developed some of the world's foremost high-performance 
computing infrastructure to support advancing the frontiers of data science. 

As the energy industry increases its use of big data and machine learning, we must consider the 
appropriate balance and scale of federal support. Advanced computing solutions increase the 
usability of the large amounts of data produced by the energy sector which can help achieve 
more efficient production, providing broad societal benefit. However, there are still technical 
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areas to be addressed including labeling and sharing of data, bias. confidence in output, and other 

issues. 

I stated during last month's hearing that the Science Committee and our other colleagues here in 
Congress have a responsibility to inquire about the technical issues as well as the societal and 
economic impacts of AI and machine learning. Ensuring a skilled workforce for the machine 

learning and AI -based jobs of tomorrow is a high priority because there is a global race to assert 
leadership in AI. The U.S. must leverage its role as an incubator of ingenuity and innovation to 
be at the forefront of this technology. 

I thank all of the witnesses for being here today and look forward to learning how Congress can 

help improve the use of machine learning and AI technologies to address big data science 
challenges in the energy sector. 

I yield back. 



19 

Chairman WEBER. Thank you. I appreciate that. 
Now, I will introduce the witnesses. Our first witness is Dr. 

Bobby Kasthuri, the first neuroscience researcher at Argonne Na-
tional Lab and an Assistant Professor in the Department of 
Neurobiology at the University of Chicago. You’re busy. Dr. 
Kasthuri’s current research focuses on innovation and new ap-
proaches to brain mapping, including the use of high-energy x-rays 
from synchrotron sources for mapping brains in their entirety. 

He holds a Bachelor of Science from Princeton University, an 
M.D. from Washington University School of Medicine, and a Ph.D. 
from Oxford University where he studied as a Rhodes scholar. Wel-
come, Doctor. 

Our second witness today is Dr. Katherine Yelick, a Professor of 
Electrical Engineering and Computer Sciences at the University of 
California, Berkeley, and the Associate Laboratory Director for 
Computing at Lawrence Berkeley National Laboratory. Her re-
search is in high-performance computing, programming languages, 
compilers, parallel algorithms, and automatic performance tuning. 

Dr. Yelick received her Bachelor of Science, Master of Science, 
and Ph.D. all in computer science at the Massachusetts Institute 
of Technology. Welcome, Dr. Yelick. 

Our next witness is Dr. Matthew Nielsen, Principal Scientist at 
the GE Global Research Center. Dr. Nielsen’s current research fo-
cuses on digital twin and computer modeling and simulation of 
physical assets using first-principle physics and machine-learning 
methods. 

He received a Bachelor of Science in physics at Alma College in 
Alma, Michigan, and a Ph.D. in applied physics from Rensselaer. 

Dr. NIELSEN. Rensselaer. 
Chairman WEBER. Rensselaer, okay, Polytechnic Institute in 

Troy, New York. Welcome, Dr. Nielsen. 
And our final witness today is Dr. Anthony Rollett, the U.S. Steel 

Professor of Metallurgical Engineering and Materials Science at 
Carnegie Mellon University, a.k.a. CMU. Dr. Rollett has been a 
Professor of Materials Science Engineering at CMU for over 20 
years and is the Co-Director of CMU’s NextManufacturing Center. 
Dr. Rollett’s research focuses on microstructural evolution and 
microstructure property relationships in 3–D. 

He received a Master of Arts in metallurgy and materials science 
from Cambridge University and a Ph.D. in materials engineering 
from Drexel University. Welcome, Dr. Rollett. 

I now recognize Dr. Kasthuri for five minutes to present his tes-
timony. Doctor? 

TESTIMONY OF DR. BOBBY KASTHURI, RESEARCHER, 
ARGONNE NATIONAL LABORATORY; 

ASSISTANT PROFESSOR, 
THE UNIVERSITY OF CHICAGO 

Dr. KASTHURI. Thank you. Chairman Smith, Chairman Weber, 
Chairwoman Comstock, Ranking Members Veasey and Lipinski, 
and Members of the Subcommittees, thank you for this opportunity 
to talk and appear before you. My name is Bobby Kasthuri. I’m a 
Neuroscientist at Argonne National Labs and an Assistant Pro-
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fessor in the Department of Neurobiology at the University of Chi-
cago. 

And the reason I’m here talking to you today is because I think 
we are at a pivotal moment in our decades-long quest to under-
stand the brain. And the reason we’re at this pivotal moment is 
that we’re actually witnessing in real time is the collision of two 
different disciplines, two different worlds, the worlds of computer 
science and neuroscience. And if we can nurture and develop this 
union, it could fundamentally change many things about our soci-
ety. 

First, it could fundamentally change how we think about under-
standing the brain. It could change and revolutionize how we treat 
mental illness, and perhaps even more significantly, it can change 
how we think and imagine and build our future computers and our 
future robots based on how brains solve problems. 

The major obstacle between us and realizing this vision is that, 
for many neuroscientists, modern neuroscience is extremely expen-
sive and extremely resource-intensive. To give you an idea of the 
scale, I thought it might help to give you an example of the enor-
mity of the problem that we’re trying to do. 

The human brain, your brains, probably contain on order 100 bil-
lion brain cells or neurons, and the main thing that neurons do is 
connect with each other. And so in your brain there’s probably— 
each neuron connects on average 10,000 times with 10,000 other 
neurons. That means in your brain there are orders of magnitude 
more connections between neurons than stars in the Milky Way 
galaxy. And what’s even more important for neuroscientists is that 
we believe that this map, this map of you, this map of connections 
contains all of the things that make us human. Our creativity, our 
ability to think critically, our fears, our dreams are all contained 
in that map. 

But unfortunately, that map, if we were to do it, wouldn’t be one 
gigabyte of data; it wouldn’t be 100 gigabytes of data. It could be 
on order a billion gigabytes of data, perhaps the largest data set 
about anything ever collected in the history of humanity. The prob-
lem is that for many neuroscientists even analyzing a fraction of 
this map is beyond their resources, the resources of their labora-
tory, the resources of the universities, and perhaps the resources 
of even large institutions. And if we don’t address this gap, then 
what will happen is that only the richest neuroscientists will be 
able to answer their questions, and we would like every 
neuroscientist to have access to answer the most important ques-
tions about brains and ultimately promote this fusion of computer 
science and neuroscience. 

Luckily, there is a potential solution, and the potential solution 
is the Department of Energy and the national lab system, which 
is part of the Department of Energy. As stewards of our scientific 
architecture, as stewards of some of the most advanced techno-
logical and computing capabilities available, the Department of En-
ergy and the national labs can address this gap, and in fact, they 
do address this gap in many different sciences. 

If I was a young astrophysicist or a young materials scientist, no 
one would expect me to get money and build my own space tele-
scope. Instead, I would leverage the amazing resources of the na-
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tional lab system to answer my fundamental questions. And al-
though many fields of science have learned how to leverage the ex-
pertise and the resources available in the national lab system, 
neuroscientists have not. 

A national center for brain mapping situated within the DOE lab 
system could actually be a sophisticated clearinghouse to ensure 
that the correct physics and engineering and computer science tools 
are vetted and accessible for measuring brain structure and brain 
function. Since the national labs are also the stewards of our ad-
vanced computing infrastructure, they’re ideally suited to incubate 
these revolutions in computer and neurosciences. 

Decades earlier, as a biologist, I just recently learned that the 
DOE and the national labs helped usher in humanity’s perhaps 
greatest scientific achievement of the 20th century, the mapping of 
the human genome and the understanding of the genetic basis of 
life. We believe that the DOE and the national lab system can 
make a similar contribution to understanding the human brain. 

Other countries like Japan, South Korea, and China, cognizant 
of the remarkable benefits to economic and national security that 
understanding brains and using them to make computer science 
better have already invested in national efforts in artificial intel-
ligence and national efforts to understand the brain. The United 
States has not yet, and I think it’s important at the end of my 
statement for everyone to remember that we are the ones who went 
to the moon, we are the ones who harnessed the power of nuclear 
energy, and we are the ones that led the genomic revolution. And 
I suspect it’s the moment now for the United States to lead again, 
to map and help reverse engineer the physical substrates of human 
thought, arguably the most challenging quest of the 21st century 
and perhaps the last great scientific frontier. 

Thank you for your time and attention today. I welcome any 
questions you might have. 

[The prepared statement of Dr. Kasthuri follows:] 
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Written Testimony of Dr. Narayanan (Bobby) Kasthuri 
Neuroscientist, Argonne National Laboratory, and 

Assistant Professor of Neurobiology, University of Chicago 
before the 

Committee on Science, Space, and Technology, Subcommittee on Energy and Subcommittee on 
Research and Technology, of the U.S. House of Representatives 

July 12th, 2018 

SUMMARY 

We stand at a pivotal moment in our centuries-long quest to understand the brain-the moment 
when the worlds of computer science and neuroscience collide. 

o We can transform how we treat mental illness and brain diseases. 
o We can revolutionize how we think about and build future computers and algorithms. 
o We can bolster our artificial intelligence capabilities and national and economic security. 

• Modem neuroscience is expensive and resource intensive. 
o Researchers encounter both financial and structural barriers to entry; needed investments 

in physics, engineering and computer science are typically beyond the scope of 
laboratories at single universities and institutes. 

o With the neuroscience community unable to efficiently utilize current capabilities, we are 
limiting the types of hypotheses we test to drive the next generation of innovation. 

o We must counteract the widening gap between the small fraction of laboratories utilizing 
the most recent technology and the remaining majority of neuroscientists. 

• The DOE and the national lab system are perfectly suited to address this gap. 
o The national laboratories act as stewards of large-scale infrastructure supporting many of 

the nation's scientific programs; however, until recently there has been limited interaction 
between the labs and the neuroscience community. 

o A national clearinghouse will ensure that the necessary physics, engineering and 
computer science resources are vetted and freely accessible to measure brain structure 
and functions. 

o As stewards of the nation's advanced computing infrastructure, the labs can support 
efforts to understand the brain just as they supported mapping the human genome. 

With 100 billion brain-cells (neurons) making an average of 10,000 connections with each other, 
the human brain is the most complicated structure studied in the history of humanity. 

o Understanding how it functions will be the great intellectual achievement of the 2 I" 
century, revealing the physical bases of our most human abilities like reasoning and 
serving as the blueprint for reverse engineering those abilities into algorithms and robots. 

o Other countries like Japan, South Korea, and China, cognizant of the enormous economic 
and national security benefits of understanding the brain, have committed national efforts 
to both brain mapping and artificial intelligence; the United States has not. 

• We went to the moon, we harnessed the power of nuclear energy, and we led the genomic 
revolution-now is the moment for the United States to lead again. 

o By mapping and reverse engineering the physical substrates of human thought, we will 
complete the most challenging quest of the 21st Century and cross what could be the last 
great scientific frontier. 
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Written Testimony of Dr. Narayanan (Bobby) Kasthuri 

Neuroscientist, Argonne National Laboratory, and 

Assistant Professor of Neurobiology, University of Chicago 

before the 

Committee on Science, Space, and Technology, Subcommittee on Energy and 
Subcommittee on Research and Technology, of the U.S. House of Representatives 

July 12, 2018 

Chainnan Weber. Chairwoman Comstock, Ranking Members Veasey and Lipinski, and 
members of the subcommittees, thank you for this opportunity to appear before you. My name is 
Bobby Kasthuri, and I am a neuroscience researcher at the U.S. Department of Energy's (DOE's) 
Argonne National Laboratory and an assistant professor of neurobiology at the University of 
Chicago. 

l am here today because I believe that understanding the human brain is the most challenging quest 
of the 21'' century-perhaps the last great scientific frontier-and that advanced capabilities and 
facilities of the DOE National Laboratories are critical to help usher in a new era of understanding. 
Scientists began and ended the great scientific challenge of the previous century-understanding 
the genetic basis of life--by creating two maps: one of the atomic structure of DNA in 1953, and 
another of every nucleotide in a human genome in 2003. The science enabled by Watson and Crick 
and the Human Genome Project is revolutionizing our understanding of the genetic bases of human 
health and disease. 

A similar revolution awaits us when we understand how human brains acquire knowledge from 
experience--how we find patterns in our senses and use them to plan and act. When we know 
exactly how those processes work, we can connect prosthetic bodies to the paralyzed, design 
rational medical treatments for brain disease, and reverse-engineer human cognition into our 
computers. potentially at the energy cost of a fraction of a common lightbulb. 

The medical ramifications alone are tremendous: 
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• The National Alliance on Mental Illness (NAMl) indicates that approximately I in 5 
adults in the United States--43.8 million people-experiences mental illness in a given 
year, resulting in nearly $200 billion in lost earnings annually. 

• The Alzheimer's Association reports that an estimated 5.7 million Americans of all ages 
are living with the disease; it is currently the sixth leading cause of death in the United 
States. In 2018, Alzheimer's and other dementias will cost the nation $277 billion, with 
costs rising as high as $1.1 trillion by 2050. 

• The Centers for Disease Control and Prevention report that I in 59 children have autism
spectrum disorders that cause mild to severe social challenges and communication 
difficulties, as well as physical and medical issues. 

Given the enormous benefits a better understanding of brains could provide, you could ask why 
we have not made more progress. Part of the problem is the sheer complexity of the human 
brain. The human brain contains around I 00 billion cells, or neurons, which make thousands of 
connections called synapses with each other. The complexity of this intricate communication 
web cannot be overstated. Parts of our nervous system beyond our brain, some just mere atoms 
long, extend from foot to spine. The quest to understand how the brain works requires more 
cooperation across academic disciplines than any other human endeavor. 

The good news is that we have defined the underlying hardware, so to speak. Every nervous 
system is based on the same principle-all representations, computations and actions mediated 
by the brain depend on neurons that are connected by synapses in highly complicated directional 
networks. Each neuron receives information from synapses that connect to its dendrites 
(branches) and sends information via its axon, which connects to dendrites of other neurons. One 
neuron might receive thousands of separate messages and convey the integrated information to 
thousands of other neurons. 

You can picture each neuron as a hub that sends and receives signals to and from many 
thousands of other neurons. Neuroscientists propose that the map of how those I 00 billion 
neurons make I quadrillion connections with each other, what we call the "connectome," is a 
map of who you are: your skills, your memories, your fears, and your personality. Disruptions or 
alterations in these maps--"mis-wirings" between neurons-are the basis of many neurological 
and psychiatric disorders. 
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The "Mind-Meld" Between Computer Science and Neuroscience 

In our quest to understand the brain, one of the most important scientific collaborations is the 
"mind meld" between computer science and neuroscience. Given the complexity of the brain I 
just described, you can imagine that no matter how neuroscientists analyze the brain-whether 
we use laser beams, genetic engineering, fluorescent proteins, pharmaceuticals, virtual reality, 
metamaterials or robotics-tremendous computing power will always be a necessity. 

Neuroscience, perhaps more than any other field of biology, operates at the cutting edge of big 

data. The raw data for the connectome. or map, I described will measure approximately 
1 trillion gigabytes (an exabyte) and could not fit in the memory of any current computer. For 
comparison, the entire Human Genome Project measures only a few gigabytes. Indeed, if you 

could combine all the written material in the world into one dataset, it would be just a small 
fraction of the size of this brain map. 

Scientists, including those at Argonne National Laboratory and the University of Chicago, and 
collaborators around the United States, are already working toward a human connectome by 

mapping smaller brains of other animals. To create even the smallest neural map teams of 
neuroscientists and computer scientists must work side by side to analyze the enormous brain 
datasets and use the latest artificial intelligence technology. Interestingly, we have discovered 
that although this collaboration clearly furthers neuroscience, this work is mutually beneficial to 

advancing computer science as well. 

First, it turns out that problems to which computer scientists are eager to apply artificial 
intelligence--understanding pedestrian behavior to ensure the safe operation of a selt~driving car 
or automatically interpreting changes in satellite images over time for strategic intelligence
involve the rapid analysis of large datasets at the same scales sought by neuroscientists. The only 
difference is that brain datasets are already orders of magnitude larger than any datasets humans 
have ever collected and are guaranteed to grow even larger. Deciphering the human brain by 
creating a new generation of artificial intelligence that is capable of analyzing the largest datasets 
ever created will inevitably aid every other field of human endeavor that struggles with big data. 

Second, and perhaps even more importantly, understanding the brain more deeply could lead to a 
revolution in computing. Even as they herald recent gains in the computational abilities of 
artificial neural networks, computer scientists remain concerned that conventional approaches 
will soon plateau in performance. Almost every human brain possesses fundamental skills that 
even the most sophisticated algorithms do not: reasoning, humor, learning and creativity. If we 
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can find the physical bases of these abilities in the brain, we can transform the landscape of 
computing. 

The Future Is Here 

Neuroscientists around the world-including a coalition comprised of both researchers from 
Argonne National Laboratory and collaborators from Princeton University (NJ), Baylor 
University (TX), Rice University (TX), the University of Notre Dame (rN), the Allen Brain 
Science Institute (WA), and other U.S. institutions-already have begun trying to reverse
engineer how brains work, to discover uniquely biological algorithms. For example, as part of 
the !ARPA MICrONS program, a component of the Brain Research through Advancing 
Innovative Neurotechnologies (BRAIN) initiative, neuroscientists seek to reveal fundamental 

aspects of the brain's learning machinery from simpler animals. By observing the dynamics of 
the living mouse brain as it learns, and mapping the connections between neurons that mediate 
the learning, we hope to decipher how the brain uses its hardware in combination with 
programming language to recognize objects. Scientists will then be able to incorporate those 
principles into the next generation of computer programs. Artificial intelligence has progressed 
rapidly, but studying the best computer we know-the brain-has the potential to generate novel 
networks with leaps in performance that would otherwise take many years of chiseling and 
searching to achieve. 

Indeed, computer scientists used the crudest visual maps of primate brains to develop what 
would become the ancestors of machine learning and other successful modern artificial 
intelligence. Given this past success, we expect that increasingly detailed maps of mouse brains 
will bear the next generation of computer algorithms. At only the halfway point of the 5-year 
MICrONS project, early results already suggest this historic data will yield countless insights for 
many years to come. Teams at Princeton, Baylor, Rice, and the Allen Brain Institute already 
have leveraged cutting-edge machine vision and artificial intelligence algorithms to produce 
exquisite maps of mouse brains with unprecedented detail, which already are changing the 
foundations ofneuroscienee and computer science. However, even the smallest part of the mouse 
brain, a small fraction in size and capability relative to the human brain, is the limit of most 
scientists. universities, and institutes. To map the human brain will require scholars with 
incredibly diverse expertise and skillsets, collaborating with federal scientific agencies like the 
National Institutes of Health, National Science Foundation, and the DOE and its National 
Laboratories. It is an interdisciplinary project of great scope and tremendous potential. 

A National Resource for Neuroscience and Artificial Intelligence 

Although neuroscientists and computer scientists are making remarkable progress, an 
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unfortunate reality still prevents us from fully understanding the human brain and leveraging 
these discoveries for society-that is, most neuroscientists lack access to the tools and resources 
needed to test their ideas about the brain. Indeed, the enduring success of the BRAIN initiative 
will depend on widespread access to the technological advancements, computational tools and 

datasets the initiative creates. 

Today the neuroscience community is underutilizing current technological capabilities, limiting 
the types of questions and hypotheses we can test to drive the next generation of innovation. We 
must counteract the widening gap between the small fraction of laboratories utilizing the most 
recent technology and the remaining majority of neuroscientists. A sophisticated national 
clearinghouse will ensure that the physics, engineering and computer science are vetted and 

freely accessible to measure brain structure and functions. 

The DOE and the National Laboratory system are uniquely suited to convene leading researchers 
across the various scientific disciplines to overcome these barriers. At the forefront of discovery 

and innovation across fundamental sciences, the DOE National Laboratories are stewards of 
large-scale scientific user facilities, including light sources, accelerators, and supercomputing 
facilities that support advancements in a range of disciplines from astrophysics to chemistry to 
material science; however, until recently interaction between the neuroscience community and 
the National Laboratory system has been limited. Indeed, a Secretary of Energy Advisory Board 
(SEAB) reported to the DOE this exact sentiment (Secretary of Energy Advisory Board Report 
of the Task Force on Biomedical Sciences, September 22,2016, p. 14) 

"Brain research is supported across many institutes of the NIH, but the opportunities for DOE 
involvement are perhaps best appreciated in the context of the recent BRAIN Initiative . 

. BRAIN has begun a concerted effort to improve the methods available for brain research, 
both for experimental work and in the domain of theory and analysis. The ultimate goal is to 
understand large circuits of nerve cells: What are all the types of neurons involved? What is the 
structure and connectivity of the circuit? What are the signals flowing through the circuit? How 
do these circuit functions relate to behavior and cognition7 " DOE laboratories clear~v have 
expertise that relates to these goals ... " 

As one of the first experimental neuroscientists at a DOE National Lab, I am amazed every day 

at the resources and tools that are at my disposal for brain science. The imaging technologies and 
advanced data-analysis techniques available through the Argonne Leadership Computing Facility 
(ALCF) and the Advanced Photon Source (APS) enable me to map the intricacies of brain 
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function at the deepest levels and to describe these processes in greater detail than ever before. 
Those tools will be even more powerful in the future. The upgrade to the APS will create the 
ultimate 3-D microscope, producing the world's brightest hard x-rays and transforming our 
ability to understand and manipulate matter-including brains-at the nanoscale. 

In 2021, Argonne will deploy the Aurora supercomputer at the ALCF. Aurora will be the first 
exascale-class system-at least 50 times faster than the nation's most powerful supercomputers 

in use today-in the United States. Aurora will enable us to explore new frontiers in artificial 
intelligence and machine learning; this will be the first time scientists have had a machine 
powerful enough to match the kind of computations the brain can do. It will be a breakthrough 
for neuroscience and for modeling biological processes. With the help of Aurora, I will be able to 
piece together millions of two-dimensional images, reconstructing the brain in three dimensions 

to create a map of the human brain. 

These world-class user facilities-particularly when leveraged together-are and will continue to 
be critical to my efforts. For example, current recording and imaging methods can sample only a 
limited number of neurons or limited brain volumes, which constrains neuroscientific discovery. 

However, when data from imaging facilities like the APS is later modeled, simulated, and 
analyzed on a DOE supercomputer, neuroscientists can image and analyze every cell and blood 
vessel in a series of complete mammalian brains. Using one of the current fastest supercomputers 

on the planet at Argonne, called Mira, -1 can quickly and efficiently analyze the millions of 
gigabytes of data this will produces. Imagine the game-changing possibilities of a resource where 
neuroscientists around the U.S., and ultimately around the world, utilize such technologies and 
infrastructure. 

As members on the House Science, Space & Technology Committee, you understand that there 
are pivotal moments in science that we can harness to advance society in leaps, rather than small 
steps. Brain research is at that critical moment now. Neuroscientists are glimpsing a future where 
we can potentially understand the physical bases of mental illnesses that currently impose huge 
personal and financial burdens. Computer scientists see a future where the U.S. leads the world 
in computer science and artificial intelligence, which is critical for our national security and 
economic progress. The U.S. leads in both fields, for now, but we have not made brain mapping 
a national priority as Japan, South Korea, and China all have. The moment to cement our 

national leadership is now. 

In 1962 at Rice University, President John F. Kennedy announced that the United States would 

put a man on the moon. Seven years later, Neil Armstrong walked on the face of the moon. 
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While some may say that the endeavor was a failure-where are moon bases now?-it is worth 
noting that when we landed on the moon in 1969, the average age of a NASA scientist was 
29 years old. Seven years earlier, at the time of Kennedy's announcement, these scientists were 
college students seeking inspiration. The "moon shot" changed their lives and focused their 

passion so that they could change society in innumerable ways. 

If we seize the opportunity now for a national moon shot for the brain, if we inspire the next 
generation of students to work at the intersection of brain science, computer science, and big 
data, we can make significant progress toward understanding the brain and curing brain diseases. 

We can create the next generation of computers and robots based on the brain, transforming our 
society and assuring U.S. leadership in these vital realms for the future. Thank you for your time 

and attention today. I welcome any questions you may have. 
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Dr. Kasthuri is the first Neuroscience Researcher at Argonne National Labs and an 
Assistant Professor in the Dept. of Neurobiology, University of Chicago. He has an 
MD from Washington University School of Medicine and a D.Phil. from Oxford 
University where he studied as a Rhodes scholar. As a post-doctoral fellow, Dr. 
Kasthuri developed an automated approach to large volume serial electron 
microscopy ('connectomics'). Currently, the Kasthuri lab continues to innovate new 
approaches to brain mapping including the use of high-energy x-rays from 
synchrotron sources for mapping brains in their entirety. The Kasthuri lab is 
applying these techniques to in service of answering the question: how do brains 
grow up, age, and degenerate? 
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Chairman WEBER. Thank you, Doctor. 
Dr. Yelick, you’re recognized for five minutes. 

TESTIMONY OF DR. KATHERINE YELICK, 
ASSOCIATE LABORATORY DIRECTOR 

FOR COMPUTING SCIENCES, 
LAWRENCE BERKELEY NATIONAL LABORATORY; 

PROFESSOR, THE UNIVERSITY OF CALIFORNIA, BERKELEY 

Dr. YELICK. Chairman Smith, Chairman Weber, Chairwoman 
Comstock, Ranking Members Veasey and Lipinski, distinguished 
Members of the Committee, thank you for holding this hearing and 
for the Committee’s support for science. And thank you for inviting 
me to testify. 

My name is Kathy Yelick and I’m the Associate Laboratory Di-
rector for Computing Sciences at Lawrence Berkeley National Lab-
oratory, a DOE Office of Science laboratory managed by the Uni-
versity of California. I’m also Professor of Electrical Engineering 
and Computer Sciences at the University of California, Berkeley. 

Berkeley Lab is home to five national scientific user facilities 
serving over 10,000 researchers covering all 50 States. The com-
bination of experimental, computational, and networking facilities 
puts Berkeley Lab on the cutting edge of data-intensive science. 

In my testimony today, I plan to do four things: first, describe 
some of the large-scale data challenges in the DOE Office of 
Science; second, examine the emerging role of machine learning; 
third, discuss some of the incredible opportunities for machine 
learning in science, which leverage DOE’s role as a leader in high- 
performance computing, applied mathematics, experimental facili-
ties, and team-based science; and fourth, explore some of the chal-
lenges of machine learning and data-intensive science. 

Big-data challenges are often characterized by the four ‘‘V’s,’’ the 
volume, that is the total size of data; the velocity, the rate at which 
the data is being produced; variability, the diversity of different 
types of data; and veracity, the noise, errors, and the other quality 
issues in the data. Scientific data has all of these. 

Genomic data, for example, has grown by over a factor of 1,000 
in the last decade, but the most abundant form of life, microbes, 
are not well-understood. Microbes can fix nitrogen, break down bio-
mass for fuels, or fight algal blooms. DOE’s Joint Genome Institute 
has over 12 trillion bases—that is DNA characters A, C, T, and G— 
of microbial DNA, enough to fill the Library of Congress if you 
printed them in very boring books that only contain those four 
characters. 

But genome sequencers produce only fragments with errors, and 
the DNA of the entire microbial community is all mixed together. 
So it’s like taking the Library of Congress, shredding all of the 
books, throwing in some junk, and then asking somebody to recon-
struct the books from them. We use supercomputers to do this, to 
assemble the pieces, to find the related genes, and to compare the 
communities. 

DOE’s innovations are actually helping to create some of these 
data challenges. The detectors used in electron microscopes, which 
were developed at Berkeley Lab and since commercialized, have 
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produced data that’s almost 10,000 times faster than just ten years 
ago. 

Machine learning is an amazingly powerful strategy for ana-
lyzing data. Perhaps the most well-known example is identifying 
images such as cats on the internet. A machine-learning algorithm 
is fed a large set of, say, ten million images of which some of them 
are labeled as having cats, and the algorithm uses those images to 
build a model, sort of a probability of which images are likely to 
contain cats. Now, in science we’re not looking for cats, but images 
arise in many different scientific disciplines from electron micro-
scopes to light sources to telescopes. 

Nobel laureate Saul Perlmutter used images of supernovae—ex-
ploding stars—to measure the accelerating expansion of the uni-
verse. The number of images produced each night from telescopes 
has grown from tens per night to tens of millions per night over 
the last 30 years. They used to be analyzed manually by scientific 
experts, and now, much of that work has been replaced by ma-
chine-learning algorithms. The upcoming LSST telescope will 
produce 15 terabytes of data every night. If you watch that, one 
night’s worth of data as a movie, it would take over ten years, so 
you can imagine why scientists are interested in using machine 
learning to help them analyze that data. 

Machine learning can be used to find patterns that cluster simi-
lar items or approximate complicated experiments. A recent survey 
at Berkeley lab found over 100 projects that are using some form 
of machine learning. They use it to track subatomic particles, ana-
lyze light source data, search for new materials for better batteries, 
improve crop yield, and identify abnormal behavior on the power 
grid. 

Machine learning, it does not replace the need for high-perform-
ance computing simulations but adds a complementary tool for 
science. Recent earthquake simulations of the bay area show that 
just a 3-mile difference in location of an identical building makes 
a significant difference in the safety of that building. It really is all 
about location, location, location. And the team that did this work 
is looking at taking data from embedded sensors and eventually 
even from smart meters to give even more detailed location-specific 
results. 

There is tremendous enthusiasm for machine learning in science 
but some cautionary notes as well. Machine-learning results are 
often lacking in explanations, interpretations, or error bars, a frus-
tration for scientists. And scientific data is complicated and often 
incomplete. The algorithms are known to be biased by the data 
that they see. A self-driving car may not recognize voices from 
Texas if it’s only seen data from the Midwest. 

Chairman WEBER. Hey, hey. 
Dr. YELICK. Or we may miss a cosmic event in the southern 

hemisphere if they’ve only seen data from telescopes in the north-
ern hemisphere. Foundational research in machine learning is 
needed, along with the network to move the data to the computers 
and share it with the community and make it as easy to search for 
scientific data as it is to find a used car online. 

Machine learning has revolutionized the field of artificial intel-
ligence and it requires three things: large amounts of data, fast 
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computers, and good algorithms. DOE has all of these. Scientific in-
struments are the eyes, ears, and hands of science, but unlike arti-
ficial intelligence, the goal is not to replicate human behavior but 
to augment it with superhuman measurement control and analysis 
capabilities, empowering scientists to handle data at unprecedented 
scales, provide new scientific insights, and solve important societal 
challenges. 

Thank you. 
[The prepared statement of Dr. Yelick follows:] 
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INTRODUCTION 

Chairman Weber, Chairwoman Comstock, Ranking Members Veasey and Lipinski, and 
distinguished Members of the Committee, thank you for holding this hearing and for the 
Committee's support for science. The opportunities presented by "'Big Data" are advancing 
science and innovation in novel and exciting ways. Machine !earning is an important part of this 
story and l commend the committee for exploring how new capabilities in high performance 
computing and computational science will open doors to new knowledge. 

My name is Kathy Yelick and l am the Associate Laboratory Director for Computing Sciences at 
Lawrence Berkeley National Laboratory. a DOE Oftice of Science laboratory managed by the 
University of California. I am also a Professor of Electrical Engineering and Computer Sciences 
at the University of California. Berkeley. It is my honor and my pleasure to participate in this 
hearing and to aid the Committee's examination of the opportunities and challenges related to 
data analytics and machine learning within the Department of Energy. Thank you for inviting me 
to testify. 

Berkeley Lab is a multipurpose lab with world leading capabilities across materials research. 
biosciences, physics, chemical sciences, energy technologies. earth and environmental sciences. 
high performance computing. advanced networking and more. Home to five national scientific 
user facilities, Berkeley Lab serves over I 0.000 researchers from all 50 states and beyond. 
Thirteen Nobel prizes arc associated with Berkeley Lab. as are fifteen National Medal of Science 
recipients. Seventy Berkeley Lab scientists are members of the National Academy of Sciences, 
one of the highest honors for a scientist in the United States, eighteen of our engineers have been 
elected to the National Academy of Engineering, and three of our scientists have been elected 
into the National Academy of Medicine. In addition, Berkeley Lab has trained thousands of 
university science and engineering students who are advancing technological innovations across 
the nation and around the world. 

In my testimony today I plan to do four things: 

First, describe some of the large scale data challenges in the DOE Office of Science. drawing 
examples from Berkeley Lab and other national laboratories" national user facilities and team 
science projects. 

Second, talk about the emerging role of machine learning- and specifically deep learning -
methods, which have revolutionized the field of artificial intelligence (AI) and may similarly 
impact scientific discovery. 

Third, discuss some of the unique opportunities for machine learning in science. leveraging 
DOE's national role as a leader in high performance computing. applied mathematics, user 
facilities, and interdisciplinary team science. 
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And, fourth, describe a vision for the national laboratories that includes foundational research in 
data science along with an interconnected network of experimental and computational facilities 
to address some of the most challenging data analytics problems in science. 

Part l: Data challenges in science 
The Department of Energy has a unique role in science as the largest funder of physical sciences 
research in the nation and with the responsibility for managing and operating many of the largest 
scientific user facilities. At Berkeley Lab alone, as mentioned previously, there are over I 0,000 
users of our scientific user facilities, which include the Advanced Light Source, the Joint 
Genome Institute. the Molecular Foundry, National Energy Research Scientific Computing 
Center (NERSC). and the Energy Sciences Network (ESnet). In addition, the Lab is a partner in 
many national and international collaborations, such as the ATLAS, Alice, and CMS projects at 
the Large Hadron Collider (LHC) in Switzerland, the Dark Energy Spectroscopic lnstrnment 
(DES!) near Tucson, Arizona. and the LZ dark matter experiment in South Dakota. 

Big data challenges are often characterized by the -1 Vs: volume (the total size). velocity (the 
speed at which is it being produced), variability (the diversity of data types) and veracity (noise, 
errors, and other quality issues). Scientific data has all of these, and DOE's user facilities are a 
big source of the challenges and the opportunities to use large data sets for new discoveries, 
because of increasing data rates. reduced costs of collecting data, and total data volumes. 

The cost of sequencing the human genome is now around $1,000 down from $10,000,000 just a 
decade ago, and the National Institutes of Health (NIH) database on genomic data (the Sequence 
Read Archive, or SRA) now holds over 8 petabytes (1015 bytes) of genomic data, a 3000x 
increase in ten years. At DOE's Joint Genome Institute, a newer database of viral genomes has 
grown nearly I OOx in just two years. 

In cosmology and particle physics, the velocities and volumes have also grown, with the 
upcoming Large Synoptic Survey Telescope (LSST) producing about 20 terabytes ( l 012 bytes) 
every night and a resulting community data set over its lifetime of about 60 petabytes. The LHC 
will collect roughly 50 petabytes of data in 2018, even after eliminating 99% of the data 
produced inside the experiment, and that 50 petabytes will grow to roughly 500 petabytes by 
2024. The LHC data from past experiments is copied to data centers around the world with 900 
petabytes currently in disk and tape storage. 

The volume and velocity of scientific data is growing because the instruments are improving-
we can sec things at a microscopic and atomic scale, measure vibrations imperceptible to the 
human eye, and take high resolution images of objects in the universe that are millions of light 
years away. The national labs are key to developing many of the instruments used for major 
science experiments. For example, Berkeley Lab has a long history of developing the detectors 
used in electron and x-ray microscopy, improving spatial resolution I 00-fold and temporal 
resolution 1 ,000-fold, to reveal atomic structure without the need for crystallization. This 
technology was revolutionary in chemistry, material science. and biology, and its use in Cryo 
Electron Microscopy instruments was cited in the 2017 Nobel Prize in Chemistry, as well as 
being commercialized for advanced medical and scientific imaging. 
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Data veracity and variety are also challenges in nearly every discipline in science, with scientists 
eager to extract vanishingly small signals from large messy data sets and combine different 
modalities to improve insights. One of the most exciting fields for the application of big data 
science and advanced computing is biology- the increasing sizes of data sets, the inherent noise, 
and the complexity make it a prime area of research to leverage these emerging tools and 
capabilities. 

Microbes are a data challenge -they are the most abundant and diverse life form on Earth. They 
exist in vast complex microbial communities called microbiomes and interact with and 
significantly impact all of the world's natural systems, including human, plant, animal. energy, 
and environmental, at all scales, from the infinitesimal to the grand. In one handful of soil there 
may be as many microbes as there are stars in our galaxy. Discovering how these complex 
communities of millions and billions of microbes interact and impact natural systems will create 
new knowledge and advance solutions to the world's most intractable problems- unlocking and 
harnessing the mysteries ofmicrobiomes will advance environmental remediation, propel new 
agricultural technologies and processes, and speed biologically-based energy solutions to market 
This research will grow the United States· bioeconomy and drive tremendous economic activity. 
Maintaining U.S. leadership in microbiome research is an economic and national security 
strategic imperative- but, it's a hard nut to crack, in large part due to the data challenges. 

For example, a particular microbial species and those its genetic data often occur only in samples 
with hundreds of different species and thousands of strains mixed together. To further 
complicate analysis, today's standard sequencing technologies produce error-laden fragments of 
DNA that need to be assembled together to tind genes. Putting it all together in a scientifically 
useful way is analogous to completing hundreds of different jigsaw puzzles with all the pieces 
mixed together. some of the pieces broken, and no reference pictures for any of the final images. 
Of course, the function of a microbiome is more than the sum of the parts, with multiple species 
interacting to impact the environment in which they live, whether it's within the human body or 
in the environment. To understand and eventually control microbial behavior from the genomic 
level, one also must combine genomic data with a variety of data .from imaging, chemical 
sensors, and other scientific instruments - making an already complex task more difficult. 

High performance computing and novel computational methods give scientists the tools needed 
to decipher these microbial puzzles and to assemble, shape and coax the data into useable 
information, removing errors, finding genes, and discovering relationships between species and 
across different microbiome samples. My own research includes leading the microbiome 
application project in the Exascale Computing Project (ECP), where the overarching goal is to 
find new information about the microbiome using more powerful algorithms and computers. It 
may reveal changes in the microbiome due to diet, weather, chemicals or other environmental 
factors, and ways of using a microbial community to produce a healthier environment for 
humans as well for food crops. More broadly, scientists have recognized the need for 
interdisciplinary research efforts in this area and for a National Microbiome Data Collaborative, 
an open, standardized, and shared data infrastructure, that could help foster integrated analyses 
and synthesis across diverse microbial datasets. 
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As another example of an ECP application, scientists and engineers at Berkeley Lab and 
Lawrence Livermore National Laboratory (LLNL) recently performed a simulation of a 
large-magnitude earthquake in the San Francisco Bay Area, and how it would affect different 
locations and buildings, with the goal of understanding impacts on critical infrastructure such as 
schools, hospitals, and the power grid. This was done at an unprecedented scale and resolution 
using Berkeley Lab's NERSC supercomputers. Even larger simulations will be done on future 
exascale systems. Already. these simulations have shown that the same building located less 
than 3 miles apart may have different risks and therefore require different building hardening. 

To make the results even more specific to a given location, the team is looking at using measured 
seismic data obtained from regionally deployed sensors during frequently occurring small 
earthquakes to help improve fine-scale geologic models. By computationally "inverting'' 
measured data, enhanced understanding of the subsurface geology can be obtained to improve 
the computational models for ground motion simulations. Merging high performance 
simulations with measured data will yield even more precise information about shaking at every 
location throughout the region. While this massive aggregation is no small undertaking. it will 
lead to improved public safety. These types of approaches are only becoming feasible because 
of the major advancements being made in high performance simulation combined with big data 
exploitation. 

Looking towards the future, even more dense data will become available as seismic sensors 
proliferate. For example, recent technology advancements provide an opportunity to deploy 
seismic sensors across the electric grid onboard smartmeters, which will provide unprecedented 
data. We need to be prepared to exploit this emerging big data for transforming hazard and risk 
assessments. 

Part 2: Data Analytics, Machine Learning, Deep Learning, and Artificial Intelligence 

Machine learning is an increasingly popular strategy for analyzing scientific data and offers 
opportunities to better leverage and benefit from the explosion in data volume. It's also a term 
that is used very broadly to refer to methods that learn from data, or to make inferences based on 
a model learned from some data. The most well-known example is identifying images. such as 
cats, on tbe internet A machine learning algorithm is fed a large set of. say, I 0 million images 
ofwhich some are labeled as having a picture of a cat. The algorithm uses those examples to 
build a model of which images contain cats, i.e., the probability that a given image contains a cat 
For example, an image with two diagonal lines that meet to form something like a eat's ear will 
have a bigher probability of containing a cat. This is known as supervised learning, because one 
starts with images labeled as cats or not, whereas unsupervised learning might have a set of 
unlabeled images and can determine which ones have similar objects in them. but does not 
determine what the objects are. In science we are not looking for cats, but we can use machine 
learning to find features such as exploding stars. cellular structures. or subatomic particles. 

There are several different kinds of machine learning algorithms, but many of the most notable 
breakthroughs in recent years have come from a powerful class of deep learning algorithms, and 
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specifically deep neural networks, which are used in this example of finding cats or other images 
in internet searches. The algorithm works in a set of layers, where one layer may find the edges 
between different objects in a picture, another layer will find shapes from the edges, and higher 
level layers will find recognizable objects such as eyes, ears, and tails. The number of layers will 
vary depending on the application problem, and it is one of the things that a data scientist may 
have to experiment with, but typically the depth is a few layers to a few dozen. 

Deep learning has led to a number of surprising results in the field of Artificial Intelligence (or 
AI). which has the goal of developing computers with human-like capabilities, including 
computer vision, speech recognition, robotics, and playing games of strategy. Deep learning is 
used in Siri to recognize speech and interpret commands, and it is used in self-driving cars to 
identify road signs, hazards. and obstacles. It was also used by Alibaba, a Chinese company, to 
outperform students on a standardized reading comprehension exam, similar to what is used in 
college admissions, and by Google's AlphaGo in 2016 to beat the world ranking world champion 
(Lee Sedol) in the game of Go, a strategy board game that is significantly harder than chess. 
These deep learning methods are so strongly linked with Al that the terms AI and deep learning 
are sometimes used synonymously. 

These ideas have been around for a long time --the neural net ideas go back to the 1940s, and 
the key algorithmic idea (hackpropagation) was developed in the 1980s. So, why have these 
algorithms suddenly become successful'> Roughly speaking, machine learning requires three 
things: large amounts of data, fast computers, and good algorithms. The grmvth in data has been 
fueled by the ubiquity of cameras, recording devices, and various sensors, facilitated by the ease 
of sharing data over the Internet, while computing performance has grown by a factor of one 
million since the early 80s. As described earlier, there has been a similar explosion in data in 
science coming from instruments that provide more detail and higher data rates, and from 
increasingly complex simulations enabled by faster computers. With DOE's abundant use of 
simulation, faster computers are both part of the challenge and part of the solution. 

DOE's unique resources in high end computing have also proven to be well suited to machine 
learning, and deep learning maps well onto the Graphics Processing Units (GPU) in the 
pre-exascale systems recently deployed in the Summit machine at the Oak Ridge Leadership 
Computing Facility (OLCF) and Sierra at LLNL. One of the key computational kernels in deep 
learning is multiplying two matrices, which also is the dominant kernel in the Unpack 
benchmark used for the TOP500 list, where Summit and Sierra are in the #I and #3 spots 
respectively. Not surprisingly, some of the early science projects on these computers are 
focused on machine learning, and are using the high speed networks, large amounts of memory, 
and unprecedented computing capability to solve problems that are intractable on conventional 
computers. 

Each year the top performing scientific application team is awarded the Gordon Bell prize, an 
award that reflects science at scale, as opposed to a fixed benchmark. Finalists for the 2018 prize 
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include a deep learning computation at over 200 petaops1/sec computation on Summit, which 
was a partnership between NERSC, OLCF, NVIDIA, and Google. that was used to analyze data 
from cosmology and extreme weather events. A second finalist is a project lead by Oak Ridge 
National Laboratory with researchers from the University of Missouri in St. Louis, which used 
an entirely different algorithm to learn relationships between genetic mutations across an 
enormous set of genomes, with potential applications in biomanufacturing and human health. 
This algorithm can also be mapped to matrix-multiply like operations. It runs at a impressive 
1.88 exaop/second! These arc the fastest deep learning and other machine learning computations 
to date. 

Part 3: The use of machine learning in science 

What does this mean for science? The image analysis example is directly analogous to 
science, because images arise in many scientific disciplines, from electron microscopes in 
biology, to x-rays from light sources used in material science. to telescopes used in cosmology. 
Saul Perlmutter, a Nobel Laureate from Berkeley Lab, used image analysis to discover the 
accelerating expansion of the Universe through observations of distant supernovae- exploding 
stars- as a kind of standard reference point. His team used a specific kind of supernova. Type 
lA, which occurs when a white dwarf star explodes; these are fairly rare, with about one per 
century within our Milky Way Galaxy. Using high powered telescopes and collecting images 
over many months, they would look for the appearance of new stars in remote galaxies that 
suddenly appeared on an image (called a "transient") and then use other telescopes, like the 
Hubble Space Telescope and the Keck Telescopes, to classify the transient as a variable star, a 
quasar, or supernova. 

Thirty years ago, a few tens of images were produced each night and were analyzed manually by 
scientific experts. By 2007. some automatic processing was done to find transients, and 
Berkeley Lab was already working on using machine learning algorithms to classify supernovae. 
Today, tens of millions of images are produced from experiments like the Dark Energy Survey. 
the Zwicky Transient Facility, and soon the Large Synoptic Survey Telescope, which produce 
thousands of new transient discoveries each night. Machine learning algorithms run 
automatically on supercomputers at NERSC and the National Science Foundation's National 
Center for Supercomputing Applications center in Illinois, scouring these images each night for 
new transients. These machine learning algorithms make scientists much more productive, 
reducing by more than !O,OOOx the number of images they look at manually. Today, the focus is 
on using deep learning to not only find these transients, but to classify them so that follow-up 
resources are only spent on those objects the scientists want to study. 

'Pctaop/second and exaop/second are. respectively. I 015 and I 0 18 operations per second. For 
machine learning applications, the computations can often be performed using less powerful 
operations than normal (double precision) floating point operations (flops) used in High 
Performance Computing (HPC). These machine learning "ops" are about one quarter as 
powerful those typical HPC flops. 
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Machine learning can often find patterns in noisy data when other approaches fail, so scientific 
applications are not limited to cosmology or even to images. We recently surveyed researchers at 
Berkeley Lab and found over I 00 projects, many in partnership with other labs and universities, 
that are using some form of machine learning. For example. researchers from Fermilab, Caltech, 
and Berkeley Lab are exploring the use of deep learning to identify and track particles in 
experiments at the Large Hadron Collider, working to replace current algorithms that are not 
easily implemented on high performance computers using traditional approaches, and are 
projected to consume enormous amounts of computing time after the LHC upgrade. Another 
group has developed machine learning strategies that aim to increase crop yields and improve the 
sustainability of agriculture while reducing economic risks for farmers and landowners as part of 
the ARIK collaboration between Berkeley Lab, the University of Arkansas, and Glennoe Farms. 
The farm is an experimental platform instrumented with sensors, drone-based imaging, and 
frequent data collection, and machine learning is the tool that will tie all the data together. The 
Lab's Center for Advanced Mathematics for Energy Research Applications (CAMERA) has 
developed a new deep learning algorithm to analyze light source images more quickly and more 
accurately than previous approaches, and the Materials Project is using machine teaming to 
remove the guesswork from materials discovery and design, driving the development of 
advanced materials. 

At DOE's Joint BioEnergy Institute (JBEI), scientists are using machine learning to improve 
biosensor design and accelerate synthetic biology to produce biofuels: the technique can predict 
the amount of biofuel produced by newly engineered bacterial cells based on data from previous 
experiments and has other applications, such as developing drugs that fight antibiotic-resistant 
infections and crops that withstand drought. And at the Joint Genome Institute, machine learning 
is used to answer fundamental questions about biology, such as the relationships between all 
genes that naturally occur in the environment. 

DOE researchers are also using machine learning to improve the operation of its facilities and 
make scientists more productive. An enormous challenge in large data is getting labels or 
metadata information associated with data from each scientific experiment- making it more 
accessible and useful to scientists. Researchers at Berkeley Lab have developed techniques to 
automatically label data. starting with the enormous stream of data on advanced materials for 
batteries and other applications. coming from the National Center for Electron Microscopy 
(NCEM), home to the world's most powerful electron microscope. In another example, ESnet, 
DOE's advanced high speed scientific network, is using a variety of machine learning techniques 
to predict the amount of data being transferred between endpoints in order to adapt network 
traffic dynamically, detect problems in the infrastructures, and find anomalous high-volume data 
transfers, which could indicate either a faulty device or a cyber attack. 

Similar ideas are used for other real-time flows of time-series data. such as looking for abnormal 
behavior in the power grid, in rooftop solar panel systems. or even financial market data. Data 
from cell phones and embedded sensors are being used to build large-scale models of regional 
transportation systems, which can be used for long term planning of transportation infrastructure, 
energy planning, and emergency response. 
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Machine learning expertise at the DOE labs can also be leveraged for other national priorities. as 
in partnerships with the NIH and the Department of Veterans Affairs (VA). The data in this case 
includes genomes, images, results of medical tests, and electronic medical records. It is being 
used to address medical challenges such as traumatic brain injury, cancer, mental health, and the 
opioid crisis. 

Berkeley Lab researchers have developed machine learning approaches to analyze and visualize 
brain image data collected from multiple devices. to automatically identify cancer cells in image 
data, fibers in textile images, and more. DOE researchers bring expertise on high performance 
computing. data analytics, modeling and simulation, as well as a culture of team-based science, 
where the team of cross-disciplinary scientists and engineers work on end-to-end solutions for 
grand challenge problems. 

Machine learning does not replace the need for the more traditional use ofHPC simulations, but 
instead offers a complementary set of techniques. Roughly speaking, simulation is used when a 
set of equations. i.e. a model. is known in advance, while machine learning may be used to infer 
a model based on data from observations. Machine learning is often combined with simulation 
to fill in parts of simulation where no known equations exist but where data is available. This 
approach is being used for simulating turbulent fluids by researchers at Sandia. 

Machine learning is also used to accelerate large ensembles of simulations, where the machine 
learning can quickly approximate them to determine which ones are most important in searching 
for a particular outcome. Finally, machine learning can be performed on the data produced by 
simulations, such as in research at Berkeley Lab searching for extreme weather events, As stated 
in a recent report by the DOE Advanced Scientific Computing Research (ASCR) community on 
scientific machine learning, "In all cases, it is clear that ML will not replace decades of research 
in principled physics-based approaches. Rather, it can bring a toolbox of methods to enrich, 
improve, and accelerate current modeling approaches." 

Part 4: The need for foundational research and interconnected facilities to advance 
data-driven scientific discovery 

As indicated from the examples above and many more across the national lab complex, scientists 
are actively pursuing the use of machine learning and advanced analytics in nearly every basic 
and applied scientific domain. Enthusiasm is appropriate based on existing results from AI and 
from the success of many commercial applications. However, enthusiasm should be tempered 
with some understanding of the challenges facing scientific applications. ASCR's recent 
workshop on scientific machine learning elucidated many of these challenges and the need for 
additional research on the mathematical foundations of machine learning. including the 
following topics: 

I) Leveraging scientific domain knowledge: Many machine learning techniques have been 
developed primarily for images, speech, and textual data. Speech and textual data may have 
use in analyzing scientific publications, notebooks, and presentations, but would not he the 
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primary focus. And. while images are common in science, their fonnats and content will be 
quite different than in more common internet image searches. Much of scientific data from 
simulations is three dimensional and may exhibit symmetries not recognized by current 
algorithms, e.g., in molecular structures. Finally, scientific data is often incomplete and 
acquiring large sets of labeled data for supervised learning may not be practical. 

:) Interpretable machine learning: The models derived from machine learning methods, and 
especially deep learning, are not a recognizable set of equations but instead may involve many 
thousands of parameters without an explanation of what each one means. For placing 
advertisements or classifying images, this may be acceptable, as long as they make good 
choices. but scientists will demand more confidence, better error bars. and in some cases 
direct explanations for use in developing theories. Simple correlations are not sufficient. 

,) Robust and efficient: There should be rigorous numerical estimates for the quality of results 
and well-defined criteria on when the inferences may be used. When applying machine 
learning to infer properties of data, one distinguishes between that data given to the algorithm 
for "training'' and the data on which it will be used. For example, images labeled as 
containing a supernova may be given as training. and once trained, it can be used to 
automatically label images. Methods should be insensitive to the details of how training data 
is selected and should perform well as long as the training set is in some sense reasonable. In 
AI research, there are concerns about bias that derives from the selection of training data-
only posting advertisements for a CEO position to white men, for example. In science, bias 
may come from artifacts of a particular instrument or measurement technique. 

The ASCR workshop report also recognized the close interaction of simulation and machine 
learning, as well as opportunities to control large scientific campaigns, whether a large set 
simulations or experiments, to choose the best cases to run. 

While the workshop was targeting mathematical research in machine learning, there are also 
computer science problems related to programmability, performance, parallelization. and scale. 
There is currently a strong preference in the deep learning community for GPU architectures. but 
even more specialized architectures may prove beneficial, which could create a divergence 
between the computing platforms tor simulation and learning. Other machine learning 
algorithms may place higher demands on the memory system and network, and as the 
foundational work evolves, deep learning methods may use sparsity, e.g., to improve running 
time or interpretability, which will also 
shift hardware requirements. Large Compute Requirements/rom DOE Experimental 

DOE will need to address the 
burgeoning data analytics needs from 
major experiments and embedded 
sensors, whether those use deep 
learning, other machine learning 
methods, or other analytics techniques. 
The figure on the right shows the 

Projects and Facilities in 2020 
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estimated computing requirements of some of the major DOE experiments, normalized to 
NERSC computing hours. For comparison, NERSC currently delivers about seven billion hours 
to its users. Some of the data analysis will require real-time processing, automated job 
scheduling, and other policy changes, in addition to sufficient computing to meet this growing 
scientific demand. 

Conclusions 

Data-driven scientific discovery is poised to deliver breakthroughs across many disciplines, and 
as stewards of many national user facilities. DOE should have a leadership role. Driven by 
innovations in instrumentation and computing, and a desire to investigate increasingly complex 
scientific questions, the data challenges will continue to grow. In addition to analytics problems, 
there are many technical challenges in data curation, sharing, metadata labeling, and search, to 
give scientists tools for research that are analogous to those that have revolutionized shopping. 
entertainment. and business. 

Machine learning is a promising approach for analytics in science, complementing but not 
replacing modeling and simulation. In spite of the extensive work already going on at the DOE 
labs, machine learning and associated mathematical foundations of machine learning are not as 
well developed as in simulation science. 

The goal in scientific discovery is more focused than so-called general AI. but also goes beyond 
emulating human capabilities. The scientific instruments described earlier are the eyes. ears and 
hands of science, and the goal is not to replicate human behavior but augment it with 
superhuman measurement, control and analysis capabilities, empowering scientists to ask and 
answer more complex questions. For this reason the alternate phrase, Intelligence Augmentation 
(L4), is probably more appropriate. 

The Exascale Computing Initiative is addressing one of the three requirement to make machine 
learning successful in DOE: availability of extreme computing capabilities. The Exascale 
Computing Project is addressing some of the underlying computational challenges of data 
analytics, with applications in cancer research, microbiome analysis, and light source imaging, 
all involving some form of machine learning along with other simulation and analytics methods. 
The project also has co-design centers in graph analytics and machine learning, which are linked 
to a number of the 24 applications. Along with the procurement strategies at the computing 
facilities, ECP will ensure that future exascale system architectures are well suited to this 
workload. But the foundational research in machine learning and broader facility issues still 
needs to be addressed. 

While raw data is growing, DOE will need a strategy and infrastructure to enable sharing, search, 
curation and management, and to ensure the facilities are coupled in a way that large experiments 
can take advantage of the high end computing facilities for the largest data challenges 

In the excitement over machine learning methods and data produced by new instruments and 
embedded sensors, one should not lose sight of the need for stronger foundational work. DOE 
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has taken this seriously in the field of modeling and simulation, developing mathematical models 
and algorithms with proven performance and quality metrics, along with quantifiable measures 
of uncertainty and errors, The scientific peer review process will drive machine learning to be 
similarly rigorous, in a way that the commercial applications do not. DOE's interdisciplinary 
approach, which will require additional expertise in statistics and mathematical optimization, in 
addition to cutTent strengths in applied mathematics and computer science, should lead to high 
quality methods that solve real problems and lead to new methods and insights that will benefit 
other applications of machine learning. 
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Chairman WEBER. Thank you, Doctor. 
Dr. Nielsen, you’re recognized for five minutes. 

TESTIMONY OF DR. MATTHEW NIELSEN, 
PRINCIPAL SCIENTIST, 

INDUSTRIAL OUTCOMES OPTIMIZATION, 
GE GLOBAL RESEARCH 

Dr. NIELSEN. Chairman Smith, Chairman Weber, and Chair-
woman Comstock, Ranking Members Veasey and Lipinski, and 
Members of the Subcommittee, it is an honor to share General 
Electric’s perspective on innovative machine-learning-based ap-
proaches to big-data science challenges that promote a more resil-
ient, efficient, and sustainable energy infrastructure. I am Matt 
Nielsen, a Principal Scientist at GE’s Global Research Center in 
upstate New York. 

The installed asset base of GE’s power and renewable businesses 
generates roughly 1/3 of the planet’s power, and 40 percent of the 
world’s electricity is managed by our software. GE Energy’s assets 
include everything from gas and steam power, nuclear, grid solu-
tions, energy storage, onshore and offshore wind, and hydropower. 

The nexus of physical and digital technologies is revolutionizing 
what industrial assets can do and how they are managed. One of 
the single most important questions industrial companies such as 
GE are grappling with is how to most effectively integrate the use 
of AI and machine learning into their business operations to dif-
ferentiate the products and services they offer. GE has been on this 
journey for more than a decade. 

A key learning for us—and I can attest to this as being a physi-
cist—has been the importance of tying our digital solutions to the 
physics of our machines and to the extensive knowledge on how 
they are controlled. I’ll now highlight a few industrial applications 
of AI machine learning where GE is collaborating with our cus-
tomers and federal agencies like the U.S. Department of Energy. 

At GE, digital twins are a chief application of AI and machine 
learning. Digital twins are living digital models of industrial as-
sets, processes, and systems that use machine learning to see, 
think, and act on big data. Digital twins learn from a variety of 
sources, including sensor data from the physical machines or proc-
esses, fleet data, and industrial-domain expertise. These computer 
models continuously update as new data becomes available, ena-
bling a near-real-time view of the condition of the asset. 

To date, GE scientists and engineers have created nearly 1.2 mil-
lion digital twins. Many of the digital twins are created using ma-
chine-learning techniques such as neural networks. The application 
of digital twins in the energy sector is enabling GE to revolutionize 
the operation and maintenance of our assets and to drive new inno-
vative approaches in critical areas such as services and cybersecu-
rity. 

Now onto digital ghosts. Cyber threats to industrial control sys-
tems that manage our critical infrastructure such as power plants 
are growing at an alarming rate. GE is working with the Depart-
ment of Energy on a cost-shared program to build the world’s first 
industrial immune system for electric power plants. It cannot only 
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detect and localize cyber threats but also automatically act to neu-
tralize them, allowing the system to continue to operate safely. 

This effort engages a cross disciplinary team of engineers from 
the global research and our power business. They are pairing the 
digital twins that I mentioned of the power plants machines, indus-
trial controls knowledge, and machine learning. The key again for 
this industrial immune system is the combination of advanced ma-
chine learning with a deep understanding of the machines’ thermo-
dynamics and physics. 

We have demonstrated to date the ability to rapidly and accu-
rately detect and even localize simulated cyber threats with nearly 
99 percent accuracy using our digital ghost techniques. We’re also 
making significant progress now in automatically neutralizing 
these threats. It is a great example of how public-private research 
partnerships can advance technically risky but universally needed 
technologies. 

Along with improving cyber resiliency, AI and machine-learning 
technologies are enabling us to improve GE’s energy services port-
folio, helping our customers optimize and reduce unplanned down-
time for their assets. Through GE’s asset performance management 
platform, we help our customers avoid disruptions by providing 
deep, real-time data insights on the condition and operation of 
their assets. Using AI, machine learning, and digital twins, we can 
better predict when critical assets require repair or have a physical 
fault. This allows our customers to move from a schedule-based 
maintenance system to a condition-based maintenance system. 

The examples I have shared and GE’s extensive developments 
with AI and machine learning have given us a first-hand experi-
ence into what it takes to successfully apply these technologies into 
our Nation’s energy infrastructure. My full recommendations are in 
my written testimony, and I’ll only summarize them here. 

Number one, continue to fund opportunities for public-private 
partnerships to expand the application and benefits of AI and ma-
chine learning across the energy sector. 

Two, encourage the collaboration between AI, machine learning, 
and subject matter experts, engineers, and scientists. 

And number three, continue to invest in the Nation’s high-per-
formance computing assets and expand opportunities for private in-
dustry to work with the national labs. 

I appreciate the opportunity to offer our perspective on how the 
development of AI and machine-learning technologies can meet the 
shared goals of creating a more efficient and resilient energy infra-
structure. 

One final thought is to reinforce a theme that I’ve emphasized 
throughout my testimony, and that is the importance of having 
teams of physical and digital experts involved in driving the future 
of AI and machine-learning solutions. 

Thank you, and I look forward to answering any questions. 
[The prepared statement of Dr. Nielsen follows:] 
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Chairman Weber and Chairwoman Comstock, Ranking Members Veasey and Lipinski, 

Representative Tonka and members ofthe Committee, it is an honor to share GE's perspective 

on innovative machine learningMbased approaches to blg data science challenges to promote a 

more resilient, efficient and sustainable energy infrastructure. I am Matt Nielsen, a Principal 

Scientist at GE's Global Research Center in Upstate New York specializing in the application of 

these digital technologies forGE's Power, Renewables and Aviation businesses. 

Between GE's Power and Renewables businesses, GE has a $44 billion energy portfolio that 

powers 1/3 of the planet. And 40% of the world's energy is managed by our software. GE's 

energy assets include everything from gas and steam power, nuclear, grid solutions and energy 

storage to onshore and offshore wind and hydro power. Our application of advanced 

technologies has allowed us to achieve the world record in combined cycle gas turbine 

efficiency and recently introduce the world's largest offshore wind turbine, the 150M~6MW 

Haliade X. 

GE Global Research was the first industrial research lab established in the United States in 1900 

and today remains the cornerstone of innovation for the General Electric Company. We are 

home to one of the world's most diversified, interdisciplinary research organizations, with 

-1,000+ scientists and engineers (-600 hold PhDs.) working at our research campus in 

Niskayuna, NY. It is at Global Research where GE's research activities in artificial intelligence 

(AI) and machine learning are being led to support our business interests and to unleash these 

technologies to help solve the world's toughest problems. 
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The nexus of physical and digital technologies is revolutionizing what industrial assets can do 

and how they are managed. One of the single most important issues industrial companies are 

grappling with is how to most effectively integrate the use of AI and machine learning into their 

business operations to differentiate the products and services they offer. GE has been on this 

journey for more than a decade, recognizing early on the impact digital technologies could have 

in taking our products and services to the next level of efficiency and performance. 

A key !earning for us has been the importance of tying our digital solutions to the physics of our 

machines and to our extensive knowledge on how they are controlled. To work in the industrial 

world, AI and machine learning technologies must be coupled with the laws of physics, or 

known truths about machines and the environment in which they operate. 

My testimony focuses on a few industria! applications of AI and machine learning that GE is 

driving with our customers and with federal agencies like the U.S. Department of Energy to 

address key challenges with cybersecurity related to critical power assets and to enable a new 

services paradigm that minimizes and strives to eliminate unexpected disruptions in the 

operation of power generation assets. We call it zero unplanned downtime. Both examples 

would not be possible without this unique combination of physical and digital technologies. 

The Industrial Internet of Things (lloT) 

The digitization of major industrial sectors including energy, aviation, transportation and 

healthcare represent the next frontier of the digital revolution we already have experienced in 

finance, entertainment and telecommunications. This current wave is being powered by the 

exponential growth in computing power and digital technologies that is allowing us to connect 

and control billions of machines. To illustrate this leap in technology, just consider that a 

typical gaming system you can buy for your kids for a few hundred dollars packs the same 

processing power as a $10 MM supercomputer from the late 1990s. 
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At GE7 one of the chief manifestations of AI and machine learning is happening through GE's 

Digital Twin technology. Digital twins are living, digital models of industrial assets, processes 

and systems that use A! and machine learning technologies to see, think and act on big data to 

drive higher business value and outcomes forGE and our customers. GE's Twins learn from a 

variety of sources that include sensor data from the physical machines, systems or processes 

themselves, fleet data and industrial domain expertise from human engineers. These models 

continuously learn as new data comes in from one or more of these sources, enabling a real

time view of the condition of your assets at any point in time. 

To date, GE scientists and engineers have created "'1.2 million Digital Twins of our industrial 

components, assets and processes that represent a broad cross-section of the energy, aviation, 

transportation and health care sectors. GE's Digital Twin is the platform for product lifecycle 

management from inception and design through operations and maintenance and all the way 

to decommissioning and repurposing of assets. In power specifically, the application of Digital 

Twins is enabling GE to revolutionize the maintenance and operation of our assets and drive 

new, innovative approaches in critical areas such as cybersecurity. 

, GE's Digital Ghost- Building the World's 1st Industrial Immune System 

Cyber threats to Industrial control systems that manage critical infrastructure such as power 

plants are growing at an alarming rate. Between 2015 and 2016, the number of cyberattacks 

increased by 110%1• While we continue to see advances in IT and OT technologies to prevent 

attacks from getting through, GE is working with the Department of Energy (DOE) on a $4.1 

million cost-shared program to build the world's first industrial immune system for electric 

power plants that could not only detect and localize cyber threats but automatically act to 

neutralize them, allowing the system to continue operating safely and efficiently. 

1 https://securityintelligence.com/attacks~target!ng~industrial-control-systems-lcs-up-110-percent/ 
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The creation of an industrial immune system that monitors a power plant's assets 24/7 seeks to 

replicate the human body's response of automatically detecting and acting to stop a virus 

invading the body. To replicate this effect with industria! systems, a team of cross disciplinary 

engineers from GE Global Research and GE's Power business are pairing a complete Digital Twin 

of the power plant system (embedded with AI and machine learning technologies) with 

Industrial controls to trigger an automatic detection and response to cyber threats when a 

power system is under attack. 

The premise for this industrial immune system to work is to understand the machine's physics. 

Around the Research Center we like to say, "you can't fool the physics." In other words, the 

Digital Twins, or digital models we create must mimic the actual physics of the power plant 

system itself. Fortunately forGE Global Research, we have both the digital and physical experts 

to design such a system. 

Using sensors and controls, we're creating an immune system that will rapidly be able to detect 

and localize where a cyber threat is occurring using advanced AI techniques. But then, our cyber 

protection system will enable the power plant system itself to automatically respond by 

neutralizing the effects of the threat. Of course, we want the detection and response to cyber 

threats to be as fast as possible. This is another way we1re using AI and machine learning. We 

can construct "reduced order" models, or mathematical models that can be executed very fast 

and quickly identify what's happening in the system. This allows fast detection of anomalies 

and the generation of rapid decisions on optimal settings to protect assets. 

This simply can't be done without combining a deep knowledge of both the physics of the 

system with an extensive knowledge of industrial controls. Industrial controls are the brains of 

machines that control how they operate. Taking optimal control actions depends on getting the 

best data insights through AI and machine learning technologies. 
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The program with the DOE is ongoing. To date, we have demonstrated the ability to rapidly and 

very accurately detect (99% accuracy} and localize simulated threats. We are also making 

progress on designing a system that can automatically act to neutralize threats. It is a great 

example of the tremendous value public/private research partnerships can advance technically 

risky, universally needed technologies that stay a step ahead of cyber attackers and strengthen 

the resilience of our energy infrastructure. 

Uninterrupted Power ... Zero Unplanned Downtime 

Along with improving resilience, AI and machine learning technologies are enabling us to 

improve the performance'aiid competitiveness of GE's energy businesses and our customers. 

We're using AI and machine learning to improve GE's energy services portfolio, helping our 

customers optimize and reduce unplanned downtime with their power assets. 

Through GE's Asset Performance Management platform, we can help our customers avoid 

disruptions by providing deep, real· time data insights on the condition and operations of the 

plant while at the same time factoring in predictive, forward looking forecasts for energy 

demand, weather and other factors that operators should account for to optimize overall plant 

management. This is another example that illustrates how critical it is for the digital solutions 

using A! and machine learning be linked to concrete physics-based models and data. 

Using AI, machine learning, and digital twins, we can better predict when critical assets require 

repair or have a physical fault. This allows our customers to move towards a condition- based 

vs. schedule· based maintenance system, meaning assets can be brought in only when a repair 

is needed. For example, we can use machine learning to quickly and efficiently compare how a 

machine is operating versus known, standard operations. If there are deviations between the 

two, critical repairs can be identified, prioritized and compared to previously known system 

outage schedules allowing a more optimized maintenance planning process. 
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Recommendations 

The examples 1 have shared and GE's extensive developments with AI and machine learning for 

complex industrial systems like power plants have given us firsthand experience and insights 

into what it takes to successfully integrate these technologies into our nation's critical energy 

infrastructure. With this perspective, I share the following recommendations: 

l. Continue funding opportunities for public/private partnerships to expand the application 

and benefits of AI and machine learning across the energy system. The Digital 

Ghost/cybersecurity solution discussed earlier pertained only to power plants and just 

scratches the surface of neutralization. More research is needed to get to a mature cyber

attack resilient controls system for power plants. We think the application of this solution 

could be expanded to more distributed energy systems that involve renewable and gas 

power as well. We encourage the Congress to continue funding opportunities through the 

DOE for public/private partnerships with industry to bolster cybersecurity protections for 

critical power infrastructure. 

2. Present and future R&D programs In AI and machine learning require both physical and 

digital experts. In the consumer internet, the value of data is measured in quantities not 

quality, For example, with online retail and advertising companies, it's the increasing 

quantity of data on people's shopping or search habits that supports their business models 

by allowing them to more accurately predict what any one individual might want to buy or 

purchase. In the industrial space, it is critical to match your digital solutions to the true 

physics of a physical machine or system. It's about finding the right data that helps you 

achieve a desired business outcome. As mentioned in the Digital Ghost/cybersecurity 

example, the ability to detect, localize and neutralize cyberthreats is tied to the physical 

understanding of the power plant. 
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3. Continue to invest in the nation's high- performance computing (HPC} assets and expand 

opportunities for private industry to work with the National Labs. The DOE and National 

Labs have done a tremendous job with maintaining and enhancing the nation's high

performance assets and in creating more collaborative opportunities with industry. The 

incredible computing power these systems offer is a powerful tool for industry in scientific 

discovery. 

We are still working to fully leverage our current computing capability, but we are certain 

that continued advances- particularly in exascale and quantum computing- will serve to 

create new advances in AI and machine learning- a potential source of competitive 

advantage for US industry. It also will help accelerate future industrial applications of AI and 

machine learning. Quite simply, it offers a competitive advantage for US industry. 

Conclusion 

We appreciate the opportunity to testify and offer our perspective on how the development of 

A! and machine learning technologies can meet the shared goals of creating a more efficient 

and resilient energy infrastructure. 

One final thought is to reinforce a theme I have emphasized throughout my testimony, and that 

is the importance of having teams of physical and digital experts involved in driving future AI 

and machine learning solutions. I can personally speak to this firsthand, being a scientist that 

started my career as a physicist and is today applying my physical expertise in a digital role 

building digital twins of industrial assets. 

In our opinion, you can have the best software developer in the world, but their solutions won't 

deliver the intended business outcome unless it's tied to real physical data and industrial 

domain knowledge to guide it. 

Thank you and I look forward to answering any questions. 
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Chairman WEBER. Thank you, Dr. Nielsen. 
Dr. Rollett, you’re recognized for five minutes. 

TESTIMONY OF DR. ANTHONY ROLLETT, 
U.S. STEEL PROFESSOR OF 

MATERIALS SCIENCE AND ENGINEERING, 
CARNEGIE MELLON UNIVERSITY 

Dr. ROLLETT. So my thanks to Chairman Weber, Chairman 
Smith, Chairwoman Comstock, Ranking Members Veasey and 
Lipinski, and all the Members for your interest. 

Speaking as a metallurgist, it’s my pleasure and privilege to tes-
tify before you because I’ve found big data and machine learning, 
which depend on advanced computing, to be a never-ending source 
of insight for my research, be it on additive manufacturing or in 
developing new methods of research on structural materials. 

My bottom line is that there are pervasive opportunities, as 
you’ve heard, to benefit from big data and machine learning. Nev-
ertheless, there are many challenges to be addressed in terms of 
algorithm development, learning how to apply the methods to new 
areas, transforming data into information, upgrading curricula, and 
developing regulatory frameworks. 

New and exciting manufacturing technologies such as 3–D print-
ing are coming on stream that generate big data, but they need 
further development, especially for qualification, in other words, 
the science that underpins the processes and materials needed to 
satisfy requirements. 

So consider that printing a part with a powder bed machine, 
standard machine, requires 1,000-fold repetition of spreading a 
hair’s-breadth layer of powder, writing that desired shape in each 
layer, shifting the part by that same hair’s breadth, and repeating. 
So if you think about taking a part and dividing the dimension of 
that part by a hair’s breadth, multiplied by yards of laser-melting 
track, you can easily estimate that each part contains miles and 
miles of tracks, hence, the big data. 

The recent successes with machine learning have used data that 
is already information-rich, as you’ve heard, cats, dogs, and so on. 
And so to advanced manufacturing and basic science, however, we 
have to find better ways to transform the data, stream into a big 
information stream. 

Another very important context is that education in all STEM 
subjects needs to include the use of advanced computing for data 
analysis and machine learning. And I know that this Committee 
has focused on expanding computer science education, so thank you 
for that. 

So for printing, please understand that the machines are highly 
functional and produce excellent results. Nevertheless, if we’re 
going to be able to qualify these machines to produce reliable parts 
that can be used in, for example, commercial aviation, we’ve got 
some work to do. 

If I might ask for the video, Daniel, if you can manage to get that 
to play. So I’d like to illustrate the challenges in my own research. 

[Video shown.] 
Dr. ROLLETT. I often used the light sources, in other words, x- 

rays from synchrotrons, most of which are curated by the Depart-
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ment of Energy. I use several modes of experimentation such as 
computer topography, diffraction microscopy, and dynamic x-ray ra-
diography. So this DXR technique produces movies of the melting 
of the powder layers exactly as it occurs in 3–D printing with the 
laser. And again, at the micrometer scale you can see about a milli-
meter there. And you can also see that the dynamic nature of the 
process means that one must capture this at the same rate as, say, 
the more familiar case of a bullet going through armor. 

Over the last couple of years, we’ve gotten many deep insights 
as to how the process works, but again, for the big-data aspect, 
each of these experiments lasts about a millisecond. That’s about 
500 times faster than you can blink. And it provides gigabytes of 
images, hence, the big data. Storing and transmitting such large 
amounts of data, which are arriving at ever-increasing rates, is a 
challenge for this vital public resource. I should say that the light 
sources themselves are well aware of this challenge. Giving more 
serious attention to such challenges requires funding agencies to 
adopt the right vision in terms of recognizing the need for fusion 
of data science with the specific applications. 

I also want to say that cybersecurity is widely understood to be 
an important problem with almost weekly stories about data leaks 
and hacking efforts. What’s not quite so well understood is exactly 
how we’re going to interface manufacturing with cybersecurity. 

So, in summary, I suggest that there are three areas of oppor-
tunity. First, federal agencies should continue to support the appli-
cation of machine learning to advanced manufacturing, particularly 
for the qualification of new technologies and materials. I thank and 
commend all of my funders for supporting these advances and par-
ticularly want to call out the FAA for providing strong motivation 
here. 

In the future, research initiatives should also seize the potential 
for moonshot efforts on objectives such as integrating artificial in-
telligence capabilities directly into advanced manufacturing ma-
chines and advancing synergy between technologies such as addi-
tive manufacturing and robotics. 

Second, we need to continue to energize and revitalize STEM 
education at all levels to reflect the importance of the data in 
learning and computing with a focus on manufacturing. I myself 
have had to learn these things as I’ve gone along. 

Third, based on the evidence that machine learning is being suc-
cessfully applied in many areas, we should encourage agencies to 
seek programs in areas where it’s not so obvious how to apply the 
new tools and to instantiate programs in communities where data, 
machine learning, and advanced computing are not yet prevalent. 

Having traveled abroad extensively, I can assure you that the 
competition is serious. Countries that we used to dismiss out of 
hand, they’re publishing more than we are and securing more pat-
ents than we do. 

Again, I thank you for the opportunity to testify and share my 
views on this vital subject. I know that we will all be glad to an-
swer your questions. 

[The prepared statement of Dr. Rollett follows:] 
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Greetings, my name is Anthony Rollett and I am a Professor of Materials Science & Engineering 
in the College of Engineering at Carnegie Mellon University, in Pittsburgh, PA. At Carnegie 
Mellon I help lead the NextManufacturing Center, which is focused on advancing additive 
manufacturing and participate in the Manufacturing Futures Initiative-a campus wide effort 

focused on accelerating innovation and enhancing manufacturing in the Greater Pittsburgh 
region. 

I thank Chairman Weber of the Energy Subcommittee and Chairwoman Comstock of the 
Research and Technology Subcommittee for inviting me to testify today. I also thank, Ranking 

Member Veasey, Ranking Member Lipinski and all of the Members of the Committee for your 
interest in Big Data and Computing, which are subjects of great interest and importance in my 
research. 

In recent years, I have had the privilege of becoming closely involved in research on 3D printing, 
which is a key component of advanced manufacturing. It is clear to me that this is a seriously 
revolutionary technology because it forces us to think differently about how to make things. The 
design of a part is as intimately coupled to the printing process and the chosen material as a 
Stradivarius is to its wood and crafting. The difference is the importance of data as input and as 
output. Imagine that in a few years we will be able to, e.g., build a rocket that is tailored to the 
particular mission, instead of forcing the payload to match one of a limited set of vehicles. Or 
that "mass production" is transmuted into "mass individualization" such that Ford's proverbial 
"any color so long as black" becomes "any choice of color and size for dozens if not hundreds of 
parts of a car." 

Let me begin by giving some context to the challenges and solutions by explaining that there are 
both practical applications and scientific advances to be gained from adapting to the availability 
of large amounts of data. I will outline three major challenges in advanced manufacturing, 

associated needs in STEM education, and a link between cybersecurity and manufacturing. 
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New and complex manufacturing technologies such as 3D printing are coming on stream that 
need further development, especially for qualification-the science of verifying that processes 
and/or materials will produce the characteristics required. Scientific research is generating ever 
larger streams of data that are challenging to handle and to interpret. There is an essential 
challenge in this that concerns the extraction of information from data. Current machine learning 
algorithms have been developed for big data, as we know, but the data concerned is information 
rich, e.g., faces or cats or cars. One could say that "big information" is as important as "big 
data." 

Another important context is that education in all STEM subjects needs to include the use of 
advanced computing for data analysis. Our data acquisition instruments are essentially all run by 
computers and modeling our experiments essentially always involves large computer codes. 
These considerations and the examples that follow demonstrate the pervasive nature of big data 

and computing and the need to incorporate computer-aided learning into every aspect of how we 
function in science and engineering. I know that this Committee has focused on expanding 
computer science education. Those efforts are critical and appreciated. 

Returning to the domain of advanced manufacturing, another exciting area of the application of 
big data, machine learning and advanced computing is to the manifold challenges of the 
materials used. In order to check the internal structure of materials and to understand their 
properties, we commonly cut, polish and photograph cross-sections. 

An early lesson for those of us in materials science and engineering was to be told that although 
computer vision is well developed for finding cats, dogs, cars etc. in images or videos, the sort of 
cross-sectional images that we produce are for more complex and the features in each image 
much less obvious. An analogy might be a painting by Jackson Pollock with its seemingly 
analysis-defying random dribbles of paint. Yet there is an organization to the image that makes 
his paintings compelling art. I assert that many of the images of materials are equally complex 
and require domain-specific analysis. We have demonstrated success with examples of teaching 
the computer to recognize different kinds of metal powders used in additive manufacturing and 
recognizing different kinds of steel where the composition is constant but the processing history 
is varied. The bottom line is that advanced manufacturing is already a source of big data but 
there are many challenges in front of us to learn how to transmute the data into information and 
then discover the algorithms that allow us to learn from that data and optimize manufacturing. 

These successes open up a wide range of potential impacts on improving materials, generating 
new materials, performing quality control on feedstocks, etc. We have also demonstrated that 
we can recognize failures in any individual powder spreading step that is essential to any powder 
bed 3D printing process; again, this points to an impact of improved machine control algorithms 
that exploit data, machine learning and high speed computing. 
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As another example of how data coupled with machine learning shows up almost everywhere, I 
ran across the "LettuceBot," which is a software that controls an agricultural machine towed by a 

tractor across lettuce plantations whose job is to decide which individual lettuce plants should 
stay in the ground to grow versus those that should be culled. Once again, cameras provide 
images that are then analyzed for a decision-making process followed by action (or not). The 
bigger picture is one where computer vision helps humans to make decisions about the 
manufacturing process that they are in charge of, i.e., advanced technology aiding workers . 

To illustrate the challenges in my own research, I often use the light sources, i.e., x-rays from 
synchrotrons, most of which are curated by the Department of Energy. I use several modes of 
experiment such computed tomography, high energy diffraction microscopy and dynamic x-ray 
radiography. Computed tomography (CT) is very similar to getting an MRI scan except that the 

high energy x-rays from the synchrotron allows one to see inside the sort of dense materials from 
which we build aircraft, engines, rockets etc. at the micrometer scale (about Ill OOth of a human 
hair). The results have been invaluable in understanding the feedstocks used in, e.g., 3D metals 

printing. High energy diffraction microscopy (HEDM) functions as a microscope, again at the 
micrometer scale, that provides, in full 3-dimensional form, a map with crystal information of 
the material in millimeter-sized samples. We can then heat and deform the sample and measure 
how it responds under load, which is proving invaluable for understanding what controls the 
durability of components, for example. Once again, a central challenge is how to transmute this 
ever expanding data stream into information and to discover the algorithms that allow us to learn 
from that data. 

Dynamic x-ray radiography (DXR) provides movies of the melting of powder layers just as 

occurs in 3D printing with a laser, again at the micrometer scale. The dynamic nature of the 
process means that one must capture the process at the same rate as the more familiar case of a 
bullet penetrating armor. Over the last couple of years this technique has provided many deep 

insights into how additive manufacturing really works at the appropriate scale of length and time. 
From the perspective of data and computing, each experiment lasts for about a millisecond, i.e., 
500 times faster than you can blink, and provides gigabytes of images. It is not difficult , 
therefore, to appreciate that a few days' worth of what we call "beam time" provide big data, so 
much so that we typically take it home on our own hard disk drives. Storing such large amounts 
of data is a challenge for this extremely important public resource. Transmitting such large 
amounts of data, e.g., to one's own university, is challenging. The mechanisms exist but they are 
not quick as they ought to be and accessing high speed transfers is definitely something for 

experts, even if the institutions at either end have the appropriate speed of access. The light 
sources themselves are well aware of the forthcoming challenge that is posed by the rapidly 
accelerating rate at which data is generated in the aggregate as detectors become ever larger and 
more sensitive. 

Acquiring the data may only occupy a few days, but analyzing it often consumes months oftime 
on the part of a graduate student. Perhaps a better way to say this is that we have the problem of 
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converting raw data to useful information, by contrast with the data available from, e.g., social 
media, which are intrinsically information-rich. My judgment is that advanced computing 
algorithms to aid researchers in the conversion of data to information are nascent at best. 
Although there is a plethora of data analytics and machine learning techniques available, 
applying such techniques in any given domain requires time and effort. 

Giving more serious attention to such challenges requires funding agencies to adopt the right 
vision in terms of recognizing the need for a fusion of research activities. We are in essence 
building the infrastructure for digital engineering and manufacturing. 

A closely related issue is the timescale on which new methods are developed. The canonical 3 or 
4-year research program rarely allows one to take a technique development to a reasonable point 
of maturity or technical readiness level in the modern argot. The high energy difTraction 
microscopy mentioned above is a case in point where an agency sustained the effort over roughly 

a decade, which enabled it to mature to the point where the research community was able to start 
using it more generally. 

Additive manufacturing provides an excellent example of an application domain for big data and 

computing. Consider 3D printing of metals as a particular facet that has grown with dramatic 
speed from a small specialized activity that most believed (as did we) would only provide 
business cases in aerospace and only in rare instances, to a technology that essentially all OEMs 
consider that they must pay attention to. It is also provoking a reaction in education, where 
universities are acting at something faster than the proverbial glacial pace and instituting new 
programs across the scale, e.g., MS programs in additive manufacturing. 

To print a part with a powder bed machine requires thousands-fold repetition of spreading a 
hairsbreadth layer of powder, writing the desired shape in that layer, shifting the part by the 
hairsbreadth, and repeating. Divide a part dimension by a hairsbreadth, multiply by yards of laser 
melt track, and one readily estimates that each part contains miles upon miles of melt tracks. 
There is a great deal of physics and chemistry detail required at the melt track scale. 

Thus, the data stream is commensurately enormous ("big"), but the impact has to be such that 
useful information about the integrity of the part is obtained. Please do not be intimidated by the 
scale because the machines arc highly functional and produce good results. Nevertheless, if we 
are to be able to qualify the machines to produce reliable parts that can be used in, e.g., 
commercial aviation, there is work to do. 

Moreover if we as a country are to maintain our competitiveness in this area, we need the full 

range of tools that, crucially, include the application of big data and advanced computing. As a 
brief illustration, consider taking high speed movies of the melt pool using visible light (as 
opposed to the highly specialized x-ray approach). This generally has to be done at an angle to 
the laser beam and the images are confused by particle spatter and metal vapor plumes. This 
means that substantial processing must be done on the videos to render them useful to the 
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researcher. We are only at the very beginning of being to use this type of data, let alone knowing 
how to incorporate the lessons learned as improved control algorithms. Permit me to underscore 
the importance of the research community and the publication of results so that companies 
involved in advanced manufacturing can adopt the results without necessarily revealing where 
they obtained the knowledge. 

Finally, cybersecurity is widely understood to be an important problem, with almost weekly 
stories about data leaks and hacking efforts. What is less well understood is how manufacturing 
and cybersecurity must interface to each other. At the consumer level, concern has already been 
expressed about the ability of bad actors to gain access to loT-enabled gadgets in one's home and 
control them or acquire data from them. With companies touting their ability to provide customer 

solutions that are based on networked machines, the importance of cybersecurity in 
manufacturing takes on a new significance and urgency. The caution in this instance is to not 
underestimate the importance of the domain-specific knowledge for determining which existing 
cybersecurity solutions will work and, more importantly, adapting the methods to suit a given 
domain. This is analogous to the way in which computer vision is applicable to materials science 
but has to be adapted to the particularities of the field. 

Recommendations 

As others have testified, the various agencies that provide federal funding for R&D have done an 
excellent job over the years of identifying worthwhile areas for development of new ideas. 

Please continue to support them. 

Specialized facilities are tremendously important to the scientific and engineering community. 
The DOE has done an exceptional job in this regard and my own research is all the richer for it. 
In addition, DOE is investing in building machine learning capabilities. The manufacturing 
institutes-such as America Makes-have also been critical to advancing more applied research. 

I suggest that there are three areas of opportunity. First, federal agencies should continue to 
support the application of machine learning to advanced manufacturing particularly for the 
qualification of new technologies and materials. Currently, no additive manufacturing processes 
or materials are qualified for mission critical defense or aerospace parts (non-mission critical 
additive parts are in use). As noted above, this requires advances in scientific research and 
strong collaboration with industry and among research and application and regulatory agencies. 
Winning the innovation race in the science of qualification is essential for future competitiveness 
and job creation in these technologies. In the future, research initiatives can also seize the 
potential for "moonshot" efforts on objectives such as integrating artificial intelligence 
capabilities directly into advanced manufacturing machines and advancing synergy between 
technologies such as additive manufacturing and robotics. 
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Second, we need to continue to energize and revitalize STEM education at all levels to reflect the 

impot1ance of data, learning and computing, with a focus on manufacturing. Data analytics will 

play a vital role across the entire manufacturing enterprise-from the lab, to product design, 

production and product service functions. It will not be necessary for all workers to have a 

computer science degree. But varying degrees of comfort and capability with statistics and data 

analytics will be vital. As a step in this direction, the NextManufacturing Center at Carnegie 

Mellon has begun engaging teachers and students with the most advanced additive 

manufacturing machines. Investments that creatively stimulate a co-development of 

manufacturing with cybersecurity innovation will be essential. 

Third, based on the evidence that machine learning is being successfully applied in many areas, 

we should encourage agencies to seek programs in areas where it is not so obvious how to apply 

the new tools and to to instantiate programs in communities where data, machine learning and 

advanced computing are not yet prevalent. Not only is domain-specific knowledge essential but, 

in manufacturing and research, the process of transmuting data into knowledge is a challenge in 

itself. In fact, one could say that "big information" is the twin of"big data." 

Having traveled abroad extensively, I can report that the competition in science and technology 

is serious. Countries that we used to dismiss out of hand are publishing more than we are and 

securing more patents than we do. Time and again, national investment in new ideas and 

technology, coupled with an expectation that industry will strive to pick these up in their 

innovation process, has kept this country in the lead. 

A best practice in my experience is where a funding agency has a well-established mechanism 

through which the scientific community can articulate needs and directions. Although a variety 

of mechanisms is appropriate, some work better than others. It is important that the community 

recognizes and is comfortable with whatever mechanism an agency uses. 

Program Managers should have some discretion in what they fund so that they are able to 

respond quickly when an interesting new idea arises. High risk with high impact is often touted 

but less often encouraged. 

Although some effort has been made to facilitate the transport of big data around the country, 

arranging to ship data at the terabyte scale requires substantial effort for ordinary researchers. 

This is, of course, is linked to the availability of data storage systems ("servers") that have the 

capacity and delivery speed to support such transfers. It would be helpful if one of the agencies 

were to be empowered to support such capabilities. 

Again, thank you very much for the opportunity to share my views on this vital subject. I would 

be glad to answer any follow up questions you may have. 



65 

Rollett's research focuses on microstructural evolution and microstructure~ 
property relationships in 3D, using both experiments and simulations. Interests 
include 3D printing of metals, materials for energy conversion systems, strength of 
materials, constitutive relations, microstructure, texture, anisotropy, grain growth, 
recrystallization, formability, extreme value statistics and stereology. Relevant 
techniques highlight spectral methods in micro-mechanics, Dynamic X-ray 
Radiography and High Energy Diffraction Microscopy. Important recent results 
include definition of process windows in 3D printing through characterization of 
porosity, 3D comparisons of experiment and simulation for plastic deformation in 
metals, the appearance of new grains during grain growth, and grain size 
stabilization. He has been a Professor of Materials Science & Engineering at 
Carnegie Mellon University since 1995 and before that was with the Los Alamos 
National Laboratory. His most recent honor was the award of US Steel Professor of 
Metallurgical Engineering & Materials Science in 2017. He is the co-Director of 
CMU's NextManufacturing Center that is dedicated to advancing manufacturing 
especially through 3D printing. He has over ZOO peer-reviewed publications 
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Chairman WEBER. Thank you, Doctor. I now recognize myself for 
five minutes. 

This question is for all the witnesses. You’ve all used similar ter-
minology in your testimonies like artificial intelligence, machine 
learning, and deep learning. So that we can all start off on the 
same page, I’ll start with Dr. Kasthuri. But could you explain what 
these terms mean and how they relate to each other? 

In the interest of time, I’m going to divvy these up. Dr. Kasthuri, 
you take artificial intelligence. Dr. Yelick, you take machine learn-
ing. Dr. Nielsen, you take deep learning. All right? Doctor, you’re 
up. 

Dr. KASTHURI. Thank you, Chairman Weber. That’s an excellent 
question. In the interest of time I’m not going to speak about artifi-
cial intelligence. There are clearly experts sitting next to me. I’m 
interested in the idea of finding natural intelligence wherever we 
can, and I would say that the confusion that exists in these 
terminologies also exist when we think about intelligence beyond 
the artificial space. And I’m happy to—maybe perhaps after I let 
the other scientists speak to talk about how we define natural in-
telligence different ways, which might help elucidate the ways we 
define artificial intelligence. 

Chairman WEBER. All right. Fair enough. Dr. Yelick, do you feel 
that monkey on your back? 

Dr. YELICK. Yes. Thank you very much for the question. So let 
me try to cover a little bit of all three. So artificial intelligence is 
a very long-standing subfield of computer science looking at how to 
make computers behave with humanlike behavior. And one of the 
most powerful techniques for some of the subproblems in artificial 
intelligence such as computer vision and speech processing are ma-
chine-learning algorithms. These algorithms have been around for 
a long time, but the availability of large amounts of labeled data 
and large amounts of computing have really made them take off in 
terms of being able to solve those artificial intelligence problems in 
certain ways. 

The specific type of machine learning is a broad class of algo-
rithms that come from statistics and computer science, but the spe-
cific classes called deep learning algorithms, and I won’t go into the 
details. I will defer that if somebody else wants to try to explain 
deep learning algorithms, but they are used for these particular 
breakthroughs in artificial intelligence. 

I would say that the popular press often equates the word artifi-
cial intelligence with the term deep learning because the algo-
rithms have been so powerful, and so that can create some confu-
sion. 

Chairman WEBER. All right. Thank you. Dr. Nielsen? 
Dr. NIELSEN. Yes, I’m not an expert in deep learning, but we are 

practitioners of deep learning at GE. And really it’s taken off in, 
I would say, the last several years as we’ve seen a rise in big data. 
So we have nearly 300,000 assets spread globally and each one 
generating gigabytes of data. Now, processing that gigabytes of 
data and trying to make sense of it we’re using deep learning tech-
niques. It’s a subfield, as you mentioned, of machine-learning algo-
rithms but allows us to extract more information, more relation-
ships if you will. 



67 

So, for example, we use deep learning to help us build a com-
puter model of a combined-cycle power plant, very complex system, 
very complex thermodynamics. And it’s only because we have been 
able to collect now years and years of historical data and then proc-
ess it through a deep-learning algorithm. So, for us, deep learning 
is a breakthrough enabled by advances in computing technology, 
advances in big-data science, and it’s allowing us to build what we 
think is more complex models of not only our assets but the proc-
esses that they perform. 

Chairman WEBER. And, Dr. Rollett, before you answer, you 
issued a warning quite frankly in your statement that there’s been 
more patents filed by some of the foreign countries than we are. Do 
you attribute that to what we’re talking about here? Go ahead. 

Dr. ROLLETT. In very simple terms, I think what I’m calling at-
tention to is investment level in the science that underpins all 
kinds of things, so whether it be the biology of the brain, the func-
tioning of the brain or how you make machines work, how you con-
struct machines, control algorithms, so on, and so forth. That’s 
really what I’m trying to get at. 

Chairman WEBER. Okay. 
Dr. ROLLETT. And I’m trying to give you some support, some am-

munition that what you’re doing as a committee, set of Subcommit-
tees is really worthwhile. 

Chairman WEBER. Yes, well, thank you. I appreciate that. 
I’m going to move on to the second question. Several of you men-

tioned your reliance on DOE facilities, which is, again, what you’re 
talking about, particularly light sources and supercomputing which 
we are focused on, have been to a couple of those for the types of 
big-data research that you all perform and my question is how nec-
essary is it for the United States to keep up to date? You’ve already 
address that with the patents statement, a warning that you 
issued, but what I want to know is have any of you all—would you 
opine on who the nearest competitor is? And have you interfaced 
with any scientists or individuals from those companies? And if so, 
in what field and in what way? Doctor? 

Dr. KASTHURI. I would say that, internationally, sort of the near-
est two competitors to us are Germany and China. And in general 
in the scientific world there is a tension between collaboration and 
competition independent of whether the scientist lives in America 
or doesn’t live in America. 

I think the good news is that for us at least in neuroscience we 
realize that the scale of the problem is so enormous and has so 
much opportunity, there’s plenty of food for everyone to eat. So 
right now, we live at the world of cooperation between individual 
scientists where we share data, share problems, and share solu-
tions back and forth unless of course familiar with what happens 
at levels much higher than that. 

Chairman WEBER. Thank you. Dr. Yelick? 
Dr. YELICK. Yes, in the area of high-performance computing I 

would say the closest competitor at this point is China. And in 
science we also like to look at derivatives, so what we really see 
is that China is growing very, very rapidly in terms of their leader-
ship. At this point we do have the fastest computer and the top- 
500 list in the United States, but of course until recently that was 
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the top two—the number-one and -three machines were from 
China. But perhaps more importantly than that there are actually 
more machines manufactured in China on that list than there are 
machines that are fractured in the United States, so there is a 
huge and growing interest, and certainly a lot of research, a lot of 
funding in China for artificial intelligence, machine learning, and 
all of that applied to science and other problems. 

Chairman WEBER. Have you met with anybody from over in 
China involved in the field? 

Dr. YELICK. Yes. Last summer, I actually did a tour of all of the 
major supercomputing facilities in China, so I got to see what were 
the number-one and number-three machines at that time—and was 
very impressed by the scientists. I think one of the things that you 
see—and a lot of, by the way, very junior scientists, the students 
that they are training in these areas, they use these machines to 
also draw talent back to China from the United States or to keep 
talent that was trained in China in the United States. And they 
have very impressive people in terms of the computer scientists 
and computational scientists. 

Chairman WEBER. And, Dr. Nielsen, very quickly because I’m out 
of time. 

Dr. NIELSEN. Yes, I would just like to echo that, like Dr. Rollett, 
we follow publications and patents, and we’re seeing a growing 
number from China, so I’d like to echo that just from that state-
ment. We’re seeing growing interest in the use of high-performance 
computing to go look at things like cybersecurity from China, so ob-
viously, that’s the number-one location we’re looking at. 

Chairman WEBER. Good. Thank you, Dr. Rollett. I’m happy to 
move on now. So I’m now going to recognize the gentlelady from 
Oregon for five minutes. 

Ms. BONAMICI. Thank you very much, Mr. Chairman. 
What an impressive panel and what a great conversation and an 

important one. 
I represent northwest Oregon where Intel is developing the foun-

dation for the first exascale machines. We know the potential of 
high-performance computing and all energy exploration, predicting 
climate weather, predictive and preventive medicine, emergency re-
sponse, just a tremendous amount of potential. And we certainly 
recognize on this Committee that investment in exascale systems 
and high-performance computing is important for our economic 
competitiveness, national security, and many reasons. 

And we know—I also serve on the Education Committee, and I 
know that our country has some of the best scientists and program-
mers and engineers, but what really sets our country apart is en-
trepreneurs and innovation. And those characteristics require cre-
ative and critical thinking, which is fostered through a well-round-
ed education, including the arts. 

I don’t think anyone on this Committee is going to be surprised 
to hear me mention the STEAM Caucus, which is—I’m cochairing 
with Representative Stefanik from New York, working on inte-
grating arts and design into STEM, learning to educate innovators. 
We have out in Oregon this wonderful organization called North-
west Noggin, which is a collaboration of our medical school, Oregon 
Health Sciences University, Portland State University, Pacific 
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Northwest College of Art, and the Regional Arts and Culture Coun-
cil. And they go around exciting the public about ongoing taxpayer- 
supported neuroscience research. And they’re doing great work and 
expanding the number of people who are interested in science and 
also communicating with all generations and all people about the 
benefits of science. 

So, Dr. Rollett, in your testimony you talked about the role of 
data analytics across manufacturing—the manufacturing sector. 
And you noted that it’s not necessarily going to be important for 
all data analytic workers to have a computer science degree, so 
what skills are most important for addressing the opportunities? 
You did say in your testimony that technology forces us to think 
differently about how to make things, so talk about the next manu-
facturing center at Carnegie Mellon and what you’re doing to pre-
pare students for evolving fields? And we know as technology 
changes we need intellectual flexibility as well, so how do you edu-
cate people for that kind of work? 

Dr. ROLLETT. So thank you for the opportunity to address that. 
The way that we’re approaching that is telling our students don’t 
be afraid of these new techniques. Jump in, try them, and lo and 
behold, almost every time they’re trying it—sometimes it’s a strug-
gle, but almost every time that they try it they’re discovering, oh, 
this actually works. Even if it’s not big data in quite the sense that, 
say, Kathy would tell us, even small data works. 

So, for example, in these powder bed machines you spread a 
layer. Well, if you just take a picture of that layer and then an-
other picture and you keep analyzing it and you use these com-
puter vision techniques, which are sort of a subset of machine 
learning, lo and behold, you can figure out whether your part is 
building properly or not. That’s the kind of thing that we’ve got to 
transmit to all of our students to say it’s not that bad, jump in and 
try it and little by little, you’ll get there. 

Ms. BONAMICI. I think over the years many students have been 
very risk-averse and they don’t want to risk taking something 
where they might not get the best grade possible, so we have to 
work on overcoming that because there’s so much potential out 
there until students have the opportunity to get in and have some 
of that hands-on learning. 

Dr. Yelick, I’m in the Northwest and it’s not a question of if but 
when we have an earthquake off the Northwest coast, and a tsu-
nami could be triggered of course by that earthquake along the 
Cascadia subduction zone. So in your testimony you discuss the re-
search at Berkeley Lab to simulate a large magnitude earthquake, 
and I listened very carefully because you were talking about the ef-
fects on an identical building in different areas. This data could be 
really crucial as we are assessing the need for more resilient infra-
structure not only in Oregon but across the country. So what tech-
nical challenges are you facing and sort of curating, sharing, and 
labeling and searching that data? And what support can the fed-
eral government provide to accelerate a resolution of these issues? 

Dr. YELICK. Well, thank you very much for the question. Yes, 
this is very exciting work that’s going on, and simulating earth-
quakes is currently at a regional scale. There are technology chal-
lenges to trying to even get that to larger-scale simulations, but I 
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think even more importantly the work that I talked about is trying 
to use information about the geology to try to give you much more 
precise information about the safety of a particular location. 

And the challenge is to try to collect this data and then to actu-
ally invert it, that is turn it into a model so you collect the data 
and then in some sense you’re trying to develop a set of equations 
that say how that area—based on the data that’s been collected 
from little tiny seismic events, it’ll tell you something about how 
that particular subregion, even a yard or a city block or something 
like that, how that city block is going to behave in an earthquake. 
And you can use the information from tiny seismic events and then 
to infer how it will behave in a large significant earthquake. And 
so there’s technical challenge, mathematical challenges of doing 
that, as well as the scale of computing for both doing the data, in-
verting the data but also then doing the simulation. 

And I think you bring up a very good point about the community 
needs for these community data sets because you really want to 
make it possible for many groups of people, not just, for example, 
a power company that has smart meter data but for other people 
to access that kind of data. 

Ms. BONAMICI. Thank you. And I want to follow up with that. I’m 
running out of time, but as we talk about infrastructure and in-
vestment in infrastructure, we know that by making better deci-
sions at the outset we can save lives and save property, so the 
more information we have about where we’re building and how 
we’re building is going to be a benefit to people across this country, 
as well as in northwest Oregon. So thank you again to this distin-
guished panel. I yield back. 

Chairman WEBER. Thank you, ma’am. 
The gentlelady from Virginia, Mrs. Comstock, is recognized. 
Mrs. COMSTOCK. Thank you, Mr. Chairman, and thank all of you 

here. This has been very interesting once again. 
Now, I guess I’d ask to all of you, what are the unexamined big- 

data challenges that could benefit from machine learning? And 
what are the consequences for the United States for not being the 
world leader in that if we aren’t going forward in the future? 
Maybe, Dr. Rollett, if you’d like to start. You look like you had an 
answer ready to go, so—— 

Dr. ROLLETT. I’ll give you a small example from my own field. 
So when we deal with materials, then we have to look inside the 
materials. So we typically take a piece of steel and we cut it and 
we polish it and we take pictures of it. So traditionally, what we’ve 
done is play the expert witness as it were. You look at these pic-
tures, which I often say resemble more of a Jackson Pollock paint-
ing than anything that remotely as a simple as a cat, and so the 
excitement in our field is that we now have the tools that we can 
start to tease things out of these pictures, that we go from some-
thing where we are completely dependent on sort of gray-bearded 
experts to let the computer do a lot of the job for you. And that 
speeds things up and it automates them and it allows companies 
to detect problems that they’re running across. So it’s just one ex-
ample. 

Dr. KASTHURI. Congresswoman Comstock, thank you for the 
question. I have two sort of answers specifically to thinking about 
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brains and then to thinking about education. I think these are the 
potential things that we can lose. One of the things that I find fas-
cinating about how our brains work is that whether you are Ein-
stein thinking up relativity or Mozart making a concerto or you’re 
just at home watching reality TV, all brains operate at about 20 
watts of energy. These light bulbs in this room are probably at 60 
watts of energy. And although you might already think some of 
your colleagues are dim bulbs, in this sense, what’s amazing about 
the things that they can accomplishes that they accomplish them 
at energy efficiencies that are currently unheard of for any type of 
algorithm. 

So I feel like if we can leverage machine learning, deep analytics, 
and understand how the brain passes information and processes in-
formation for energies that are really energy efficiencies unheard 
of in our current algorithms and robots, that’s a huge benefit to 
both the national and economic securities of our country. That’s the 
first. 

And the second thing I’d like to add, the other reason that it’s 
important for us to lead now—and I’ll do it by example—is that in 
1962 at Rice University John F. Kennedy announced that we were 
going to the moon. And he announced it and in his speech he said 
we’re going to go to the moon—and I paraphrase—not because it’s 
easy but because it’s hard and because hard things test our mettle 
and test our capabilities. 

The other interesting fact about that is that in 1969 when we 
landed on the moon, the average age of a NASA scientist was 29 
years old, so quick math suggests that when Kennedy announced 
the moonshot, many of these people were in college. They were stu-
dents. And there was something inspirational about positing some-
thing difficult, positing something visionary. And I suspect that 
this has benefited us—in recruiting this generation of scientists to 
the moonshot has benefited this country in ways that we yet 
haven’t calculated. And I suspect that if we don’t move now, we 
lose both of these opportunities, among many others. 

Mrs. COMSTOCK. So it’s really a matter of getting that focus and 
attention and commitment so that you have that next generation 
understanding this is really a long-term investment, and we have 
a passion for it, so they will. 

Dr. KASTHURI. Exactly. 
Dr. YELICK. I’ll just add briefly that I think we really want to— 

in terms of the threat associated with this is really about con-
tinuing to be a leader in computing but also about the control and 
use of information. And you can see the kinds of examples we’ve 
given are really important, and you hear about it in the news about 
the control and use of information. We need leaders in under-
standing how to do that and make sure that information is used 
wisely. 

We teach our freshmen at Berkeley a course in data science, so 
whether they’re going to go off and become English majors or art 
majors or engineers, we think it’s really important for people to un-
derstand data. 

Dr. NIELSEN. And just real briefly, I’d like to build a little bit on 
Dr. Rollett’s comments. For us, we’re seeing tremendous benefit in 
big data for things like trying to better predict when an aircraft en-
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gine part has to be repaired, when it needs to be inspected, very 
critical for the safety of that engine. For gas turbines, same thing. 
Wind parts need to be inspected and repaired. 

So where does big data come in? It comes in with computational 
fluid dynamics, which we leverage—actually, the high-performance 
computing infrastructure of the United States materials science, 
material knowledge, trying to understand grain structure, et 
cetera. So for us, that nexus of the digital technologies with the 
physics, understanding the thermodynamics of our assets are lead-
ing us into what I think is just a better place to be from mainte-
nance scheduling, safety, resiliency, et cetera. 

Mrs. COMSTOCK. Thank you. I really appreciate all of your an-
swers. 

I yield back, Mr. Chairman. 
Chairman WEBER. The gentleman from Virginia, Mr. Beyer, is 

recognized for five minutes. 
Mr. BEYER. Mr. Chairman, thank you very much, and thank you 

all very much for doing this. 
Dr. Kasthuri, so on the BRAIN Initiative I think obviously the 

most—maybe the most exciting thing happening in the world 
today, I was fascinated by this whole notion of the Connectome, 1 
billion neurons with 1 quadrillion connections, you talk about it 
being if you took—of all the written material in the world into one 
data set, it’d just be a small fraction of the size of this brain map. 
Is it possible that it’s simpler than that, that it sort of strains my 
understanding that there are few things in nature that are as com-
plex as that. Why in evolution have we developed something that— 
and every human being on the planet has a brain that’s already— 
contains more connections than every bit of written material? 

Dr. KASTHURI. Congressman Beyer, that’s a great question, and 
like most scientists I’m going to do a little bit of handwaving and 
a little bit of conjecture because the question that you’re asking is 
the question that we are trying to accomplish. We know reasonably 
well that there are, as you said, 100 billion brain cells, neurons, 
that make on order 1 quadrillion connections in the brain. Now, 
that—when I say the data of that, I’m really talking about the raw 
image data. What will it take to take a picture of every part of the 
brain and if you added up all the data of all those pictures to-
gether, it would be the largest data set ever collected. 

Now, I suspect we have to do that at least once and then it might 
be possible that there are patterns within that data that then sim-
plify the next time that we have to map your brain. One way to 
think about this is that before we had a map of DNA, we didn’t 
realize that there was a pattern within DNA, meaning every three 
nucleotides—A, C, T, et cetera—codes for a protein. And that es-
sentially simplifies the data structure to, let’s say, 1/3. I don’t need 
to know, I just need to know that these three things are an inter-
nal pattern that then gets repeated again and again and again. 
And that was a fundamental insight. We have no similar insight 
into the brain. Is there a repetitive pattern that would actually re-
duce the amount of data that we had to collect? 

So, you’re right, it might be that the second brain or the third 
brain isn’t going to be that much data, but now let me give you the 
counter because as a scientist I have to do both sides or all sides. 
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The other thing we know is that each human brain is unique, very 
much like a snowflake. Your brain, the connectivity, the connec-
tions in your brain at some level have to represent your life his-
tory, what your brain has experienced. 

And so the question for me—and I think it’s really one of the 
most important questions—is even within the snowflake there are 
things that are unique to snowflakes but they’re the same. They ei-
ther have seven arms are eight arms or six arms. I get them con-
fused with spiders, but it’s one of those is the answer. So there’s 
regularity in a snowflake at the level of the arms, but there is 
uniqueness at the level of the things that jut out of the seven arms 
of the snowflake. And the fundamental question is what is unique, 
what is the part that makes each of us a neurological snowflake 
and what is common between all of us? And that would be one of 
the very first goals of doing a map is to discover the answer to your 
question. 

Mr. BEYER. Yes, well, thank you for a very thoughtful answer. 
And I keep coming back to the Einstein notion that always looking 
for the simplest answers, things that unify it altogether. So here’s 
another simple question. You talked in your very first paragraph 
about reverse engineering human cognition into our computers, 
good idea? At our most recent AI hearing here a lot of the con-
troversy was, you know, dealing with Elon Musk and others and 
their concerns about what happens when consciousness emerges in 
machines. 

Dr. KASTHURI. Again, a fantastic question. Here’s my version of 
an answer. We deal with smarter things every day. Many of our 
children, especially mine, wind up getting consciousness and being 
smarter than us, certainly smarter than me, but yet we don’t worry 
about the fact that this next generation of children, forever the 
next generation of children will always be smarter than us because 
we’ve developed ways as a society to instill in them the value sys-
tems that we have. And there are multiple avenues for how we can 
instill in our children the value systems that we have. 

I suspect we might use the same things when we make smart al-
gorithms, the same way we make smart children. We won’t just 
produce smart algorithms but we’ll instill in them the values that 
we have the same way that we instill our values in our children. 

Now, that didn’t answer your question of whether reverse engi-
neering the brain is a specific good idea for AI or not. The only 
thing I would say is that no matter what we can imagine AI—arti-
ficial intelligence doing, there is a biological system that does that 
at more energy efficiency and its speed for which that AI physical 
silicon system does not. But I suspect these answers are probably 
best debated amongst you and then you could tell us. 

Mr. BEYER. Well, that was a very optimistic thing. I want to say 
one of the things we do is we keep the car keys in those cir-
cumstances. 

Mr. Chairman, I yield back. 
Chairman WEBER. Thank you. The gentleman from Kansas is 

recognized for five minutes. 
Mr. MARSHALL. Well, thank you, Mr. Chairman. 
Speaking of Kansas, I’m sure you all remember President Eisen-

hower is the one who started NASA in 1958, but it was President 
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Kennedy, as several of you have stated, that, you know, gave us 
the definitive goal to get to the moon. And as a young boy I saw 
that before my eyes, the whole country wrapped around that. 

Each of you get one minute. What’s your big, hairy, audacious 
goal, your idea, it took 11 years, ’58 to ’69 to get to the Moon. 
Where are we going to be in 11 years? Dr. Rollett, we’ll start with 
you and you each get one minute. 

Dr. ROLLETT. I think we’re going to see that manufacturing is a 
much more clever operation. It understands the materials. It un-
derstands how things are going to last, and it draws in a much 
wider set of disciplines than it currently does. I have to admit I 
don’t exactly have an analogy to going to the moon, but that’s a 
very good challenge. 

Mr. MARSHALL. What I like about your idea is that’s going to add 
to the GDP. Our GDP grows when we become more efficient, not 
when federal government sends dollars to States for social projects, 
so I love adding to GDP. 

Dr. Nielsen, I guess you’re next. 
Dr. NIELSEN. So I would love it if every one of our assets—and 

I mentioned there are about 300,000 globally—had their own dig-
ital twin, so every aircraft engine had its own digital twin. A dig-
ital twin is a computer model that when the asset is operating, 
we’re collecting data. So imagine an aircraft engine taking off. As 
soon as that aircraft engine takes off, we pull the data back from 
the aircraft engine and we update the computer model. That com-
puter model becomes a digital twin of the physical asset. If every 
one of our 300,000-plus assets had a digital twin, we’d be able to 
know with very good precision when it needed to be maintained, 
when it needed to be pulled off wing, what kind of repairs when 
it went to a repair shop, what kind of repairs need to occur. 

Mr. MARSHALL. You can do that with satellites and a whole 
bunch of things. 

Dr. NIELSEN. We can pull back data from a whole variety of dif-
ferent pathways. It’s then utilizing that data in the most efficient 
way, which we use machine learning and AI-type technologies—— 

Mr. MARSHALL. Maybe get internet to rural places by doing that, 
right? 

Dr. NIELSEN. Yes. 
Mr. MARSHALL. Okay. We better go on. Dr. Yelick? 
Dr. YELICK. So I think one of the biggest challenges is under-

standing the microbiome and being able to use that information 
about the microbiome in both health applications and agriculture, 
in engineering, materials, and other areas. 

So I think that we already know that your microbiome, your own 
personal microbiome is associated with things like obesity, diabe-
tes, cardiovascular disease, and many other disorders. We don’t un-
derstand it as well in agriculture, but we’re looking at things like 
taking images of fields, putting biosensors into the fields and put-
ting all this information together to understand how to make—to 
improve the microbiome to improve crop yield and reduce other 
problems. So I think it’s about both understanding and controlling 
the microbiome, which is a huge computational problem. 

Mr. MARSHALL. Okay. Dr. Kasthuri? 
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Dr. KASTHURI. The thing I would really like to have done in 11 
years is understand how brains learn. And actually it reminds me 
of something that I should’ve said earlier about the differences be-
tween artificial intelligence, machine learning, deep learning, and 
how brains learn. The main difference is that for many of these al-
gorithms you have to provide them thousands of examples, millions 
of examples, billions of examples before they can then produce in-
ferences or predictions that are based on those examples. 

For those of you with children, you know that that’s not the way 
children learn. They can learn in one example. They can learn in 
half an example. Sometimes I don’t even know where they’re learn-
ing these things. And when they learn something, they learn not 
only the very specific details of that thing, they can immediately 
abstract it to a bunch of other examples. 

For me, this happened with my son the first time he learned 
what a tiger was. An image of a tiger he could see, and then as 
soon as he learned that, he could see a cartoon of a tiger, he could 
see a tiger upside down, he could see the back of a tiger or the side 
of a tiger, and from the first example be able to infer, learn all of 
these other general applications. 

If in 11 years we could understand how the brain does that and 
then reverse engineer that into our algorithms and our computers 
and robots, I suspect that will influence our GDP in ways that we 
hadn’t yet imagined. 

Mr. MARSHALL. Okay. Thank you so much. I yield back. 
Chairman WEBER. I thank the gentleman. 
The gentleman from the great State of Texas is recognized. 
Mr. VEASEY. Thank you, Mr. Chairman. 
Dr. Rollett, am I pronouncing that right? 
Dr. ROLLETT. It’ll do. 
Mr. VEASEY. Okay. In your testimony you talk about the huge 

amounts of data that are generated by experiments using light 
sources to examine the processes involved in additive manufac-
turing. You also highlight the need for more advanced computing 
algorithms to help researchers extract information from this data. 
And you state that we are essentially building the infrastructure 
for digital engineering and manufacturing. I was hoping that you’d 
be able to expand on that a little bit and tell us also what are the 
necessary components of such infrastructure. 

Dr. ROLLETT. Right. So one of the things that I didn’t have time 
to talk about is where does the data go? And so, you know, one’s 
generating terabytes, the standard story is you go to a light source, 
you do an experiment, all of that data has to go on disk drives, and 
then you literally carry the disk drives back home. So despite the 
substantial investments in the internet and the data pipe so to 
speak, from the perspective of an experiment, it’s still somewhat 
clumsy. So even that infrastructure could do with some attention. 

It’s also the case that the algorithms that exist have been devel-
oped for a fairly specialized set of applications. So, you know, the 
deep-learning methods, they exist, and what we’re doing at the mo-
ment is basically borrowing them and applying them everywhere 
that we can. But, in other words, we haven’t gone very far with de-
veloping the specialized techniques or the specialized applications. 
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So even that little movie that I showed, to be honest, I mean, the 
furthest that we’ve got is doing very basic analysis so far, and we 
actually need cleverer, more sophisticated algorithms to analyze all 
of that information that’s latent in those images. I know that 
sounds like I’m not doing my job, but, I’m just trying to get some 
idea across of the challenges of taking techniques that have been 
worked up and then taking them to a completely different domain 
and doing something worthwhile. 

Mr. VEASEY. I was also hoping that you’d be able to describe the 
progress your group has made in teaching computers to recognize 
different kinds of metal power—powders using—— 

Dr. ROLLETT. Powders. 
Mr. VEASEY. —additive manufacturing. I think that you—— 
Dr. ROLLETT. Right. 
Mr. VEASEY. —go on to say that these successes have the poten-

tial to impact improvements to materials, as well as the generation 
of new materials. And I hope—was hoping you could talk about 
that a little bit more and for the ability of a computer to recognize 
different types of metal and improvements to materials and how 
that can impact the development of new materials. 

Dr. ROLLETT. So thank you for the question. So I was trying to 
think of a powder—I mean, think of talcum powder or something 
like that. You spread some on a piece of paper and you look at it 
and you think, well, that powder looks much like any other powder. 
It looks like something you would use in the garden or whatever. 
So the point I’m trying to get across is that when you take these 
pictures of these materials, one material looks much like another. 
However, when you take pictures with enough resolution and you 
allow these machine-learning algorithms to work on them, then 
what you discover is they can see differences that no human can 
see. 

So it turns out that you can use the computer to distinguish pow-
ders from different sources, different materials, so on and so forth. 
And that’s pretty magic. That means that you can again, if you’re 
a company and you’re using these powders, you can detect whether 
you’ve got—you know, if somebody’s giving you what’s supposed to 
be the same powder, you can analyze it and say, no, it’s not the 
same powder after all. So there’s considerable power in that. 

Another example is things break, they fracture, and you might 
be surprised, but there’s quite a substantial business in analyzing 
failures. You know, bicycles break and somebody has to absorb the 
liability. Bridges crack; somebody has to deal with that. Well, that’s 
another case where the people involved look at pictures of these 
fracture surfaces and they make expert judgments. 

So one of the things we’re discovering is that we can actually, 
again, use some of the computer vision techniques to figure out if 
this fracture is a different kind of fracture or this is a different fa-
tigue failure that’s occurred. Again, it’s magic. It opens up—not 
eliminating the expert, not at all. The analogy is with radiography 
on cancers. It’s helping the experts to do a better job, to do a faster 
job, to be able to help the people that they’re working for. 

Mr. VEASEY. Thank you very much. I appreciate that. 
And, Mr. Chairman, I yield back. 
Chairman WEBER. Thank you, sir. 
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The gentlelady from Arizona is now recognized. 
Mrs. LESKO. Thank you, Mr. Chairman. 
I have to say this Committee is really interesting. I learn about 

all types of things and people studying the brains. I think we’re 
going to hear about flying cars sometime soon, which is exciting. 
I’m from Arizona, and the issues that are really big in my district, 
which are the suburbs of Phoenix mostly, are actually national se-
curity and border security. And we have two border ports of entry 
connecting Mexico and Arizona, and I have the Luke Air Force 
Base in my Congressional district. And so I was wondering if you 
had any ideas how machine learning, artificial intelligence are 
being used in border security and national security. If you have 
any thoughts? 

Dr. YELICK. Well, I can say generally speaking that in national 
security, like in science, you’re often looking for some signal, some 
pattern in very noisy data. So whether you’re looking at telephones 
or you’re looking at some other kind of collected information, you 
are looking for patterns. And machine learning is certainly used in 
that. 

I’m not aware in border security of the current applications of 
machine learning. I would think that things like face-recognition 
software would probably be useful there, and I just don’t know of 
the current applications. 

Dr. NIELSEN. So I know some of the colleagues at our research 
center are exploring things like security, using facial recognition 
but trying to take it a step further, so using principles of machine 
learning, et cetera, trying to detect the intent of a person. So they’ll 
use computer vision, they’ll watch a group of individuals but try to 
infer, make inferences about the intent of what that group is doing. 
Is there something going to happen? Who is in charge of this 
group? What are they trying to do? 

And they’re working with the Department of Defense on many of 
these applications. And I think there’s going to be tremendous 
breakthroughs where artificial intelligence and machine learning 
are going to help us not only recognize people but also trying now 
to recognize the intent of what that person is trying to do. 

Dr. ROLLETT. And you mentioned an Air Force Base, so some-
thing that maybe not everybody’s aware of is that the military op-
erates very old vehicles, and they have to repair and replace a lot. 
And that means that manufacturing is not just a matter of deliv-
ering a new aircraft; it’s also a matter of how you keep old aircraft 
going. I mean, think of the B–52s and how old they are. 

And so there are very important defense applications for machine 
learning, for manufacturing, and manufacturing in the repair-and- 
replace sense. And again, when you’re running old vehicles, you’re 
very concerned about outliers, which hasn’t come up very much so 
far today, but taking data and recognizing where you’ve got a case 
that’s just not in the cloud, it’s not in with everybody else and fig-
uring out what that means and how you’re going to deal with it. 

Mrs. LESKO. Anyone else? There’s one person left. 
Dr. KASTHURI. Of course, yes. It’s me. So of course my work 

doesn’t deal directly with either border security or national secu-
rity, but just to echo one other sentiment, one of the things I’m in-
terested in is that, as our cameras get faster, instead of taking 30 
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shots per second, we can now take 60 shots per second, 90 shots 
per second, 120 frames per second usually, and you start watching 
people’s facial features as they are just engaging in normal life. It 
turns out that we produce a lot of microfacial features that happen 
so fast and so quick that they often aren’t detected consciously by 
each other but convey a tremendous amount of information about 
things like intent and et cetera. 

I suspect that, as our technology, as our cameras get better and 
of course if you take 120 pictures in a second versus 30 pictures 
in a second, that’s already four times more data that you’re col-
lecting per second. If we can deal with the data and get better cam-
eras, we will actually be making inferences about intentions sooner 
rather than later. 

Mrs. LESKO. Very interesting. I’m glad that you all work in these 
different fields. 

And I yield back my time, Mr. Chairman. 
Chairman WEBER. Thank you, ma’am. 
The gentleman from Illinois, Mr. Foster, is recognized. 
Mr. FOSTER. Thank you, Mr. Chairman. And thank you to our 

witnesses. 
And, let’s see, I guess I’ll start with some hometown cheerleading 

for Argonne National Lab, which—and I find it quite remarkable. 
Argonne lab has been—they’ve come out to events that we’ve had 
in my district dealing with the opioid crisis, I find it incredible that 
one single laboratory—we have everything from using the ad-
vanced photon source and its upgrades to directly image what are 
called G-coupled protein receptors at the very heart of the chemical 
interaction with the brain all the way up through modeling the 
high-level function of the brain, the Connectome, and everything in 
between. And it’s really one of the magic things that happens at 
Argonne and at all of the—particularly the multipurpose labora-
tories, which are really gems of our country. 

Now, one thing I’d like to talk about—and it relates to big data 
and superconducting—is that you have to make a bunch of techno-
logical bets in a situation where the technology is changing really, 
really rapidly. You know, for example, you have the choice of—for 
the data pipes, you can do conventional, very wide floating point 
things for partial differential equations and equations of state, 
things like that, the way supercomputing has been done for years, 
and yet there’s a lot of movement for artificial intelligence toward 
much narrower data paths, you know, 8 bits or even less or 1 bit 
if you’re talking about simulating the brain firing or not. 

You know, you have questions on the storage where you can 
have—classically, we have huge external data sets, you know, like 
the full geometry of the brain that you will then use supercom-
puting to extract the Connectome. Or now we’re seeing more and 
more internally generated data sets like these are games playing 
each other where you just generate the data, throw it away. You 
don’t care about storage at all. Or simulation of billions of miles of 
driving where that data never has to be stored at all, and so that 
really affects the high-level design of these machines. 

In Congress, we have to commit to projects, you know, on a sort 
of five-year time cycle when every six months there are new disrup-
tive things. We have to decide are these largely going to be front 
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ends to quantum computing or not? And so how do you deal with 
that sort of, you know, internally in your planning? And should we 
move more toward the commercial model of move fast, take risks, 
and break things, or do we have—are our projects that we have to 
approve in Congress things that have to have no chance of failing? 
And do you think Congress is too far on one side or the other of 
that tradeoff? 

Dr. YELICK. I guess as a computer scientist maybe I’ll start here 
and I would say that you’ve asked a very good question. I think 
this issue of risk and technology is very important, and we do need 
to take lots of risks and try lots of things, especially right now as 
not only are processors not getting any faster because of the end 
of Dennard scaling, but we’re facing the end of Moore’s law, which 
is the end of transistors getting denser on a chip. And we really 
need to try a number of different things, including quantum, 
neuromorphic computing, and others. 

The issue of even the design of computers, if we look at the 
exascale computing program, very important. Of course, the first 
machine targeted for Argonne National Lab is in 2021, and the 
process that is really fundamental to the exascale project is this 
idea of codesign, that is, bringing together people who understand 
the applications like Tony and with the people that understand the 
applied mathematics, and people that understand the computer ar-
chitecture design. 

And the exascale program is looking at both applying machine- 
learning algorithms for things like the Cancer Initiative, as well as 
the microbiome where you also have these very tiny datatypes, only 
four characters that you can store in maybe two bits, and putting 
all of that together. So those machines are being codesigned to try 
to understand all those different applications and work well on the 
traditional high-performance simulation applications, as well as 
some of these new data-analysis problems. 

To answer your question directly, I think that, if anything, that 
project is very focused on that goal of 2021, and some other ma-
chines will come after that in ’22 and ’23. And the application—so 
it’s not just about delivering the machines; it’s about delivering 25 
applications that are all being developed at the same time to run 
on those machines. 

It is a very exciting project. I actually lead the microbiome 
project in exascale, and I think it’s a great amount of fun. But it 
is a project that doesn’t have much room for risk or basic research, 
and so I do think it’s very important to rebuild the fundamental 
research program, for example, the Department of Energy to make 
sure that ten years from now we could have some other kind of fu-
ture program that we would have the people that are trained in 
order to answer those basic questions and figure out how to build 
another computing device of some kind. 

Mr. FOSTER. Well, yes, thank you. That was a very comprehen-
sive answer. But if you could just in my last one second here just 
sort of—do you think Congress is being too risk-averse in our ex-
pectations or, you know, should we be more risk-tolerant that allow 
you occasionally to fail because you made a technological bet that 
is—you know, that has not come through? 
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Dr. YELICK. You know, I think I’ll answer that from the science 
perspective. As a scientist, I absolutely want to be able to take 
risks and I want to be able to fail. I think the Congressional ques-
tion I will leave to you to debate. 

Mr. FOSTER. Thank you. I yield back. 
Chairman WEBER. Thank you. 
The gentleman from California, Mr. Rohrabacher, is recognized. 
Mr. ROHRABACHER. Thank you very much, Mr. Chairman. 
I wanted to get into some basics here. This is for the whole 

panel. Who’s going to be put out of work because of the changes 
that you see coming as we do what’s necessary to fully understand 
what you’re doing scientifically? Who’s going to be put out of work? 

Dr. ROLLETT. I hope very much that nobody’s going to be put out 
of work. 

Mr. ROHRABACHER. Oh, you’ve got to be kidding. I mean, when-
ever there’s a change for the better, I mean, otherwise, we’d have 
people working in—— 

Buggy whips would still be—— 
Dr. ROLLETT. Yes. I think the point here is to sustain American 

industry at its most sophisticated and competitive level. 
Mr. ROHRABACHER. What professions are going to be losing jobs? 

You’re making me—I mean, everybody’s afraid to say that. Come 
on, you know? 

Dr. ROLLETT. I would say they’ve mostly been lost. I mean, if you 
look at steel mills, we have steel mills. They used to run with 
30,000 people. 

Mr. ROHRABACHER. Right. 
Dr. ROLLETT. That’s why the population of Pittsburgh was so 

large years ago, right? It’s decreased enormously—— 
Mr. ROHRABACHER. Okay. Well, where can we expect that in the 

future from this new technology or this new understanding of tech-
nology? Anybody want to tell me? 

Dr. KASTHURI. I have a very quick—— 
Mr. ROHRABACHER. Don’t be afraid now. 
Dr. KASTHURI. I have a very quick answer. Historically, a lot of 

science is done on getting relatively cheap labor to produce data 
and to analyze data, by that I mean graduate students, 
postdoctoral fellows, young assistant professors, et cetera. I sus-
pect—— 

Mr. ROHRABACHER. So they’re not going to be needed probably? 
Dr. KASTHURI. Well, I suspect that they should still be trained 

but then perhaps that they won’t be used specifically in just labori-
ously collecting data and analyzing data. 

Mr. ROHRABACHER. Okay. So let’s go through that. Where are the 
new jobs going to be created? What new jobs will be created by the 
advances that you’re advocating and want us to focus some re-
sources on? 

Dr. KASTHURI. I’m hoping that when the people who are trained 
in science no longer have to do all of that work, they do—they then 
expand into other fields that could use scientific education like the 
legal system or Congress. 

Mr. ROHRABACHER. But what specifically can we look at, say, 
that will remind Congressmen always to turn off the ringer even 
when it’s their wife? Now, I’m in big trouble, okay? Tell me—so, 
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what jobs are going to be created? What can we expect from what 
your research is in the future? Do you have a specific job that you 
can say this—we’re going to be able to do this, and thus, people 
will have a job doing it? 

Dr. YELICK. Well, I think there will be a lot more jobs in big data 
and data analysis and things like that and more interesting jobs 
I think going along with what was already said, that it’s really 
about replacing—so if we replace taxi drivers with self-driving cars 
that eliminates a certain class of jobs but it’ll—— 

Mr. ROHRABACHER. Okay. Well, there you go. 
Dr. YELICK. Right, but it allows people to then spend their time 

doing something more interesting such as perhaps analyzing the 
future of the transportation system and things like that. 

Mr. ROHRABACHER. Well, but taxicab driver—finally, I got some-
body to admit somebody’s going to be hurt and going to have to 
change their life. And let me just note that happens with every bit 
of progress. Some people are left out and they have to form new 
type of lifestyles, and we need to understand that. Maybe we need 
to prepare for it as we move forward. 

What diseases do you think that—especially when we’re talking 
about controlling things that are going on in the human mind, 
what diseases do you think that we can bring under control that 
are out of control now? Diabetes, obviously has something to do 
with the brain is telling the body what to do, different—maybe 
even cancer? What diseases do you think that we can have a 
chance of curing with this? 

Dr. KASTHURI. I think there’s a range of neurological diseases 
that obviously we’ll be able to do a better job curing or amelio-
rating once we understand the brain. These range from 
neurodegenerative diseases like Alzheimer’s and Parkinson’s to 
more mental illness, psychiatric illnesses and to even early devel-
opmental diseases like autism. I think all of these will absolutely 
be benefited by a better understanding—— 

Mr. ROHRABACHER. Then if we can control the way the brain is 
functioning, the maladies that you’re suffering like I say diabetes 
and et cetera, that maybe we can tell the brain not to do that and 
once we have that deeper understanding. 

One last question. I got just a couple seconds. I remember 2001 
Hal got out of control and tried to kill these people. And Elon Musk 
is warning us. I understand somebody’s already brought that up. 
But if we do end up with very independent-minded robots, which 
is what I think we’re talking about here, why shouldn’t we think 
of that as a potential danger, as well as a potential asset? I mean, 
Elon Musk is right in that. 

Dr. ROLLETT. Well, I was going to throw in that I think one op-
portunity would be in health care and for example, the use of ro-
bots as assistants, so not replacing people but having robots help 
them. Well, those robots have to be programmed, they have to be 
built. 

Mr. ROHRABACHER. Right. 
Dr. ROLLETT. I mean, there’s a huge infrastructure that we don’t 

have. 
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Mr. ROHRABACHER. Yes, but if you were building robots that can 
think independently, who knows—you know, and they’re helping us 
in the hospitals or wherever it is, what if Hal gets out of control? 

Dr. ROLLETT. Right, right. So I think AI is being discussed most-
ly in the context of how do you do something? How do you make 
something work? When it comes to what these machines actually 
do, you also need supervision. And what I think we have to do is 
to build in AI that addresses control and evaluation, you know, the 
equivalent of the little guy on your shoulder saying don’t do that; 
you’re going to get into trouble. So you need something like that, 
which I haven’t heard people talk about much. 

Mr. ROHRABACHER. Okay. Well, thank you very much, Mr. Chair-
man. I yield back. 

Chairman WEBER. You’ve been watching too many 
Schwarzenegger films. 

Mr. ROHRABACHER. That’s true. 
Chairman WEBER. The gentleman yields back and, Mr. McNer-

ney, you’re recognized for five minutes. 
Mr. MCNERNEY. I thank the Chairman. And I apologize to the 

panel for having to step in and out in the hearing so far. 
Mr. Nielsen, I’m a former wind engineer. I spent about 20 years 

in the business. And I understand that the digital twin technology 
has allowed GE to produce—to increase production by about 20 
percent. Is that right? 

Dr. NIELSEN. About five percent on an average wind turbine, yes. 
Mr. MCNERNEY. Five percent? 
Dr. NIELSEN. Five percent, which is pretty amazing when you 

think we’re not switching any of the hardware. It’s just making 
that control system on a wind turbine much smarter using a—— 

Mr. MCNERNEY. And five percent is believable. 
Dr. NIELSEN. Five percent—— 
Mr. MCNERNEY. Twenty percent for the wind farm—— 
Dr. NIELSEN. No—yes, it’s five percent for—— 
Mr. MCNERNEY. Okay. Okay. I can believe that. As Chair of the 

Grid Innovation Caucus, I’m particularly interested in using new 
technology to create a smarter grid. We have things like the duck 
curve that are affecting the grid. How can all this technology im-
prove grid stability and reliability and efficiency and so on? 

Dr. NIELSEN. Yes, so we’re now embarking on research for under-
standing how to better integrate disparate power sources together 
in regional, so imagine us trying to use AI machine learning, say, 
okay, I have a single combined-cycle power plant. How do I better 
optimize the efficiency of it, produce less emissions, use less fuel, 
allow more profit from it? But we’re taking that now a step further 
and saying how do I then look regionally and integrating not only 
that combined-cycle power plant but the solar farm, the wind farm, 
et cetera? How do I balance that and optimize at a grid-scale level 
versus just a microscale level? 

So that’s some of the research that’s ongoing now. We’re con-
tinuing to work on it. But that’s our plan is to better figure out 
that macroscale optimization problem. 

Mr. MCNERNEY. So, I mean, once you get that figured out, then 
you need to have some sort of a SCADA or control system that can 
dispatch and—— 
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Dr. NIELSEN. Yes, correct. 
Mr. MCNERNEY. Okay. So that’s another product for GE or for 

the other—— 
Dr. NIELSEN. Yes. Correct. 
Mr. MCNERNEY. Okay. 
Dr. NIELSEN. We’re figuring out how to not only build those opti-

mization routines but how to then put them in what we call edge 
devices, the SCADA systems, the—— 

Mr. MCNERNEY. Sure. 
Dr. NIELSEN. —unit control systems, et cetera. So it’s not only 

trying to figure out the algorithm but making sure that algorithm 
can execute in a timescale that can be put into some of these, as 
you mentioned, SCADA systems and control systems. 

Mr. MCNERNEY. Okay. Well, with the digital ghost, the—a power 
plant can replicate an industrial system and the component parts 
for cyber vulnerability. Is that right? 

Dr. NIELSEN. So we use digital ghost at what we call the cyber 
physical layer. So imagine having a digital twin of a gas turbine. 
So that digital twin tells us how that gas turbine is behaving and 
should behave. We then compare to what signal is being generated, 
what sensors are being—signal’s been generated, and we compare 
that behavior and say that behavior doesn’t look right. Our digital 
twin says something’s not correct. The thermodynamics aren’t cor-
rect. 

Mr. MCNERNEY. Well, I mean, I can see that for mechanical—— 
Dr. NIELSEN. Yes. 
Mr. MCNERNEY. —systems. What about cyber? 
Dr. NIELSEN. So what we’re doing is we’re not applying it at sort 

of the network layer. We’re not watching network traffic. We’re ac-
tually looking at the machine level and understanding if the ma-
chine is behaving as it should be given the inputs, the control sig-
nals, as well as the outputs, the sensors, et cetera. Some recent at-
tacks look at replicating sensors—— 

Mr. MCNERNEY. So the same sort of behavior characteristics are 
going to be monitored—can tell you whether or not there’s a cyber 
issue or some other sort of mechanical failure—— 

Dr. NIELSEN. Yes. 
Mr. MCNERNEY. —impending? 
Dr. NIELSEN. Perfect. It’s a—— 
Mr. MCNERNEY. Very good. 
Dr. NIELSEN. It’s an anomaly detection scheme, yes. 
Mr. MCNERNEY. Dr. Yelick, thank you for coming. And I visited 

your lab a number of times. It’s always a pleasure to do so. I think 
you guys are doing some really good work out there. 

One of the things that was striking was the work you did on 
exascale computing, simulating a San Francisco earthquake and 
how striking that is. Do you think we have the collective use—have 
we collectively used this information to harden our systems, to 
harden our communities against an earthquake, or is that some-
thing that is yet to happen? 

Dr. YELICK. That’s something that is yet to happen. We’re just 
starting to see some of this very detailed information coming from 
the simulations. And as I mentioned earlier, even bringing in more 
detailed data into the simulations to give you better geological in-



84 

formation about the stability of a certain region or even a certain 
local area, a city block or whatever, and using that information is 
not something that is happening yet but obviously should be. 

Mr. MCNERNEY. This is sort of a rhetorical question but some-
body can answer it if you feel like. I know we hear about the social 
challenges of digital technology and AI and big data, you know, in 
terms of job displacement. Does AI tell us anything about that, 
about how we should respond to this crisis? 

Dr. YELICK. I don’t know of any studies that have used AI to do 
that. People do use AI to understand the market, economics, and 
things like that, and I’m sure that people are using large-scale data 
analytics of various kinds, and they certainly are to understand 
changes in jobs and what will happen with them. 

It is, by the way, a very active area of discussion within the com-
puter science community about both the ethics, which you heard 
about I think at previous hearing of AI, but also the issues of re-
placing jobs. 

Mr. MCNERNEY. Sure. Dr. Rollett? 
Dr. ROLLETT. If I might jump in, I would encourage you to think 

about supporting research in policy and even social science to ad-
dress that issue because AI displacing people is about education, 
it’s about retraining, it’s about how people behave. So we scientists 
are really at sort of the front end of this, but there’s a lot of impli-
cations that are much broader than what we’ve talked about this 
morning. 

Mr. MCNERNEY. All right. Thank you. Mr. Chairman, I yield 
back. 

Chairman WEBER. Thank you, sir. 
The gentleman from Florida, Dr. Dunn, is recognized. 
Mr. DUNN. Thank you very much, Chairman Weber. 
And I want to add my thank you to the panel and underscore my 

personal belief in how important all of your work is. I’ve visited Dr. 
Bobby Kasthuri’s lab, a great fan of your work and your energy 
level. Dr. Yelick, we’ll be visiting you in the near future, so that’ll 
be fun, too. 

I want to focus on the niche in big computing, which is artificial 
intelligence, and I apologize I missed that hearing earlier, but it 
was near and dear to my heart. 

I think we all see many potential benefits of artificial intel-
ligence, but there are some potential problems, and I think it 
serves us to face those as we’re having this virtual lovefest for arti-
ficial intelligence. You know, and we’ve known this since at least 
the ’60s. I mean, the Isaac Asimov robotic novels and the robotic 
laws, the Three Laws of Robotics, which I have in my printout, the 
copies of in case anybody doesn’t remember them. I bet this group 
does. 

But what I want to do is—I also, by the way, was looking for 
guides for artificial intelligence and I came up with the 12 Boy 
Scout laws, too, so I don’t know how that—so I want to offer some 
quotes and then get some thoughts from you, and these are quotes 
from people who are recognizably smart people. Stephen Hawking 
said, ‘‘I think the development of artificial intelligence could spell 
the end of the human race.’’ Elon Musk, quoted several times here, 
said, ‘‘I think we should be very careful about artificial intelligence. 
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If I were to guess what our biggest existential threat is, it’s prob-
ably that.’’ Bill Gates responded, ‘‘I agree with Elon Musk and I 
don’t understand why people are concerned.’’ 

And then finally, Jaan Tallinn, one of the inventors of Skype, 
said with ‘‘strong and artificial intelligence, planning ahead is a 
better strategy than learning from mistakes.’’ And went on to say, 
‘‘It really sucks to be the number-two intelligent species on the 
planet; just ask the gorillas.’’ 

So in everybody’s handout you have a very brief summary of a 
series of experiments run at MIT on artificial intelligence. The first 
one was named Norman, which was an artificial intelligence edu-
cated on biased data, not false data but biased data and turned 
into a deeply sociopathic intelligence. There was another one Tay, 
which was really just an artificial intelligence Twitterbot, which 
they turned loose into the internet, and I think it wasn’t the inten-
tion of the MIT researchers, but people engaged with Tay and tried 
to provoke it to say racist and inappropriate things, which it did. 
And there are some other experiments from MIT as well. 

So I want to note, like Dr. Kasthuri, I have sons that are more 
clever than I, but they are not virtual supermen, nor do they oper-
ate at the speed of light, so, you know, there’s ways of working 
with them. I’m not so sure about that with artificial intelligence. 

My question first, what are the implications of a future where 
black-box machine learning, the process can’t even be interpreted? 
You know, once it gets several layers in, we can’t interpret it. 
What’s the implications today on that to you, Dr. Kasthuri and Dr. 
Yelick, if I could? 

Dr. KASTHURI. Congressman Dunn, thank you for the kind words 
to start. And I actually suspect there is a reasonable concern that 
the things that we develop in artificial intelligence are different 
than the other things like our children because their ability to 
change is at the speed of computers as opposed to the speed of our 
own. So I agree that there’s legitimate cause for concern. 

I suspect that we will have to come up with lessons and safe-
guards the same way that we’ve done with every existential crisis: 
the discovery of nuclear energy, the application to nuclear weapons. 
As humans, we do have some history of living on the edge and fig-
uring out how to get the benefit of something and keep the risk at 
bay. 

You’re right that if algorithms can change faster than we can 
think, our existing previous historical safeguards might not work. 

To the specific question that you asked about the non- 
interpretability, for me, without knowing what the algorithm is 
producing, how do you innovate? If you don’t know the funda-
mental nature of what the algorithm is—its principles for how it 
comes to a conclusion, I worry that we won’t be able to innovate 
on those results. 

And this is interestingly perhaps as a thought exercise: What if 
a machine-learning algorithm could tell me—could make—could 
collect enough data to make a prediction about a brain, about your 
brain or someone else’s brain that was incredibly accurate? Would 
we at that moment care how that machine-learning algorithm ar-
rived at its conclusion? Or would we at that moment take the re-
sults that the algorithm produces and just go on with it, in which 
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case there could be a missed opportunity for learning something 
deeply fundamental and principled about the brain. 

Mr. DUNN. And very quickly, Dr. Yelick. 
Dr. YELICK. Well, I agree with that. I think that these deep 

learning algorithms which have these multiple layers, which is why 
they’re deep, they have millions perhaps of parameters inside of 
them. And we don’t really understand when you get an answer out 
why all these parameters put together tell you that that’s a cat and 
this one’s not a cat. And so that may be okay if we’re trying to fig-
ure out where to place ads as long as we give it unbiased data 
about where the place the ads so the right—so—— 

Mr. DUNN. But it might be more problem if it was flying a drone 
swarm on attack some place? 

Dr. YELICK. Well, where it’s a problem is if I’m a scientist, I want 
to understand why. It’s not enough to say there’s a correlation be-
tween these two things. And if the, you know, drone is flying in the 
right place, that’s really probably the most important thing about 
some kind of a controlled vehicle. But in science, you want to—— 

Mr. DUNN. We’re dangerously close to being way, way, way over 
time, so I better yield back here, Mr.—thank you very much, 
though. I appreciate the chance. 

Chairman WEBER. All right. The gentlelady from Nevada, Ms. 
Rosen, is recognized. 

Ms. ROSEN. Thank you. I want to thank you for one of the most 
interesting, informative, and I want to say this is on the bleeding 
edge of everything that we need to worry about for sure. 

But one thing we haven’t talked about is data storage. And data 
storage specifically is critical infrastructure in this country, right, 
because we have tons and tons of data everywhere, and where it 
goes and how we keep it is going to be of utmost importance. 

And so I know that we’re trying to focus on that in the future, 
and in my district in Nevada we have a major data storage com-
pany. It has state-of-the-art reliability. We have lots of quality 
standards to ensure its data is secure, but like I said, we don’t con-
sider it critical infrastructure. 

So right now in this era of unprecedented data breaches, data 
hacks, every moment they are just pounding on us, in your view 
what are—the data storage centers that house the government and 
private sector, where are their vulnerabilities and what are the im-
plications? How should we be sure that we classify them as critical 
infrastructure? 

Dr. YELICK. So, clearly, those data centers are storing very im-
portant information that should be protected. And, as you said, 
even at the computing centers that we run in the labs, there’s a 
constant barrage of attacks, although we store at NERSC the cen-
ter at Berkeley lab only scientific data, so it is not really critical 
data. I think that using these kinds of machine-learning techniques 
to look for patterns is one of the best mechanisms we have to pre-
vent attack, and they do have to learn from these patterns in order 
to figure out what is—and—what is abnormal behavior. And we’re 
looking at—as we build out the next network, even kind of embed-
ding that information into the network so that you can see patterns 
of attack even before they get to a particular data set or a par-
ticular computer system. 
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Ms. ROSEN. Thank you. I have one other question. And you were 
talking about using predictive analytics with a digital twin to talk 
about fatigue in planes. But how can we use that to discuss infra-
structure fatigue as we talk about the infrastructure failures 
around this country in bridges, roads, ports, et cetera, et cetera? 
So—— 

Dr. ROLLETT. That’s I think a question of recognizing the need 
and talking to the agencies and finding out whether you consider 
there are adequate programs to do that. I’m going to guess that 
there is not a huge amount of activity, but I don’t know, so that’s 
why I’m being very cautious in my answer. 

But I suspect it’s one of the opportunity areas. It’s an area where 
there is data. It’s often rather incomplete, but it would definitely 
benefit from having the techniques applied, the machine-learning 
techniques to try to find the patterns, to try to identify outliers, 
particularly trends that are not good. 

Ms. ROSEN. Thank you. 
Dr. NIELSEN. I would just—— 
Ms. ROSEN. Oh, please, yes. Yes. 
Dr. NIELSEN. Oh, I’m sorry. I would just second the comments 

made. I mean, at GE we obviously focus a lot of our attention on 
the commercial assets that we build, but there’s no reason the tech-
nologies, the ideas that are being applied there could be applied to 
bridges and infrastructure and all that. 

Ms. ROSEN. Right. 
Dr. NIELSEN. It’s just, I think, a matter of will and policy to do 

that, right? 
Ms. ROSEN. So I—do you think that would be well worth our 

time here in this Committee to promote those kinds of policies or 
research for you all or someone to do the—use the predictive ana-
lytics? Congresswoman Esty and I sit on some infrastructure com-
mittees, and really important that we try to find out points of fail-
ure before they fail, right? 

Dr. ROLLETT. Absolutely. And I would encourage you to bring 
state and local government into that discussion because they often 
own a lot of those assets. 

Ms. ROSEN. Yes. Thank you. I yield back my time. 
Chairman WEBER. The gentlelady yields back. 
The gentlelady from Connecticut is recognized. 
Ms. ESTY. Thank you so much. And this is tremendously impor-

tant for this Committee and for the U.S. Congress to be dealing 
with, and we really appreciate you taking the time with us today. 

All of you have mentioned somewhat in passing this critical im-
portance of how are the algorithms structured and how are we 
going to embed the values if we have AI moving much faster than 
our brains can function or at least on multiple levels simulta-
neously? 

So we did have a hearing last month in talking about this, and 
one of the issues that came up that everyone supported—and I’d 
like your thoughts on that—is the critical importance of a diverse 
workforce in doing that. If you’re going to try to train AI, it needs 
to represent the diversity of human experience, and therefore, it 
can’t be like my son who did computer science in astrophysics. If 
they all look like that, if those are—the algorithms are all being 
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developed by, you know, 26-year-olds like my son Thomas, we’re 
not going to have the diversity of life experience. 

So, first, if you can quickly—because I’ve got a couple of ques-
tions—thoughts on how do we ensure that? Because we’re looking 
at that issue. We talk about that diverse workforce all the time, 
but when we’re looking at AI and algorithms, it becomes vitally im-
portant that we do this. It’s not about checking the box to say the 
Department of Labor that we’ve got a diverse workforce. This is ac-
tually vital to what we need to do. 

Dr. YELICK. So if I can just comment on that. Yesterday, before 
I left UC Berkeley, I gave a lecture to the freshman summer class 
introductory computing class. My title was rather ostentatious as 
‘‘How to Save the World with Computing.’’ What I find is that 
when you talk about the applications of computing and including 
data analytics and machine learning and real problems that are so-
cietal problems, you tend to bring in a much more diverse work-
force. That class in particular has had over 50 percent women and 
a very good representation at least relative to the norm of under-
represented minorities as well. 

Ms. ESTY. Anyone else who—I mean it—MIT has found that 
when they change the title of some of their computer science class-
es to again be applied in sort of more political and social realms, 
they had a dramatic change in terms of composition of classes. 

Dr. NIELSEN. Yes, I would just quickly build upon that, too. I 
think to me when you look at AI and machine learning, you have 
to have a critical eye. You have to always be looking at it. And I 
think a diverse workforce and diverse experience can help just 
bring more perspectives to help critically question why are those al-
gorithms doing what they’re doing? What is the outcomes? How can 
we improve that? So I would support that supposition, yes. 

Dr. YELICK. I’ll just mention that the name of the course—which 
I was not teaching, by the way, I was giving a guest lecture—is 
‘‘The Beauty and Joy of Computing,’’ so maybe that helps. 

Ms. ESTY. Well, that helps. And if I could have you turn again— 
and some of you have mentioned the important role of federal re-
search. I mean that’s what this Committee is looking at, what is 
uniquely the federal role. As you see across the board, there’s more 
and more effort and being engaged and we see it in space research 
and other places to move into the private sector with the notion the 
federal government is not very good at picking winners and losers. 
So if you can all talk about what you think are the most critical 
tasks for federal investment in, say, foundational and basic re-
search that then will be developed by the GE’s and others and com-
panies not yet formed or conceived of because, again, that’s part of 
our job is to figure out—I see it as our job to defend putting those 
basic research dollars in because we don’t know where they’re 
going to go but we do know they’re vital to keep us, whether it’s 
competitive or frankly just have better research and more care. 

Dr. KASTHURI. So perhaps I can go really quick. I suspect that 
there is a model of funding scientific research that’s this idea that 
if you plant a million seeds in the ground, a few flowers will grow, 
where individual labs and individual scientists have the freedom to 
judge what is the next important question to address. 
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And I can see why having the federal government decide the next 
important question to address might not be the most efficient way 
to push science forward. But where I do see the federal government 
really playing a role is in the level of facilities and resources, that 
what I imagine is that the federal government establishes large- 
scale resources and facilities like the national lab system and then 
allow individual scientists to promote their individual ideas but 
leveraging the federal resources. And I wonder if this is a com-
promise between allowing these seeds to grow but the federal gov-
ernment—maybe this is appropriate but maybe not—providing the 
fertilizer for those seeds. 

Ms. ESTY. They think we generate a lot of it at least in this 
place. 

Dr. YELICK. So I would just add I think the importance of funda-
mental research, as well as the facilities and infrastructure and the 
applied mathematics, the computer science, statistics, very impor-
tant in machine learning. And, as we said, these machine-learning 
algorithms have been used a lot in nonscientific domains. There’s 
a lot of interest in applying them in scientific domains. I think the 
peer-review process in science will make machine learning better 
for everybody if we really put a lot of scrutiny on it. 

Dr. ROLLETT. And very quickly, I wanted to add that I think it’s 
important that program managers in the federal government have 
some discretion over what they fund and take risks. And it’s also 
important that the agencies have effective means of getting com-
munity input. And I don’t want to name names, but some agencies 
have far more effective mechanisms for that than others. 

Ms. ESTY. Well, we might want to follow up with that last point. 
And I wanted to just put out for you to help us with—and you 

mentioned it, Dr. Yelick, with—on peer review, this systematic— 
because of pressures to publish or perish and show success is we 
are not sharing the failures, which are absolutely essential for 
science to make progress. It’s one of the issues we’ve touched on 
a lot in this Committee. We don’t have any good answers, and it’s 
gotten worse because of the pressures to do—to get grant money 
and to show progress. But I am deeply concerned about those pres-
sures both from the private sector and the public sector making it 
harder for us—people hoard the, quote, ‘‘bad results,’’ but they’re 
absolutely essential for us to learn from them. 

And so I don’t know how we change that dynamic, but I think 
that is something that we could really use your thoughts on that 
because whether it’s—AI can maybe help us with disclosing the 
dead ends and we learn from the dead ends and we move forward. 
But it is something that we have a big issue with in how we deal 
with the sharing of the not-useful results, which may turn out to 
be very useful down the line. 

Dr. YELICK. I completely agree with that. I think the first step 
in that is sharing the scientific data and allowing people to repro-
duce the successful results but also, as you said, examine the sup-
posed failures to see—there are many examples of this in physics 
and other disciplines where people go back to data that may be 10 
or 20 years old and find some new discovery in it. 

Ms. ESTY. Thank you very much. I really appreciate your indul-
gence to keep us here to the bitter end. Thank you. Not the bitter, 
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not you, just the fact that the bell has rung, and we had a lot of 
questions for you. We appreciate it. Thank you so much. 

Chairman WEBER. After failing 1,000 times for the lightbulb, Dr. 
Edison, his staffer said doesn’t that frustrate you? He goes, what 
are you talking about? We’re 1,000 ways closer to success. 

So I thank the witnesses for their testimony and the Members 
for their questions. The record will remain open for two weeks for 
additional written comments and written questions from the Mem-
bers. 

This hearing is adjourned. 
[Whereupon, at 12:08 p.m., the Subcommittees were adjourned.] 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Bobby Kasthuri, Researcher, Argonne National Laboratory; Assistant Professor, The 
University of Chicago 

Questions submitted by Rep. Jacky Rosen, House Committee on Science, Space, and 
Technology 

As you all have discussed, scientists and companies continue to utilize big data analytics to 
better achieve research goals and improve industry needs. In Nevada, the Desert Research 
Institute- or DRI, the state's environmental research facility uses extensive monitoring 
and modeling programs to analyze environmental and health data. For the past two years, 
DRI has been working with partners on the Healthy Nevada Project, one of the first 
community-based population health studies in the country. They are studying health, 
environmental, and socioeconomic data to better understand how these factors and genetics 
can help predict who may be at risk for certain diseases, allow for quicker diagnoses, and 
encourage the development of better treatments. 

1. In your view, is there a productive role that the Department of Energy can play in 
accelerating the development of technologies like those that the Healthy Nevada 
Project is using? 

The U.S. Department of Energy (DOE) brings the power of supercomputing and advanced 
mathematics to challenging issues in healthcare, complementing the capabilities of other federal 
institutions. Via its joint projects with the National Cancer Institute (NCI) and the U.S. 
Department of Veterans Affairs (VA), DOE is developing technologies to conduct large-scale 
genomics analysis and to process medical records with artificial intelligence (AI). These 

technologies are designed to increase cancer treatment options, and to improve veterans' 
healthcare through the Million Veterans Program (MVP) and its focus on cardiovascular disease, 
suicide prevention, traumatic brain injury, and prostate cancer. Researchers could apply the same 
advanced computing methods to the types of data the Healthy Nevada Project is currently 
collecting and analyzing. 

2. How should we balance investments in DOE's computing facilities and advanced 
data analytics? Are we creating data faster than we can analyze it? 

DOE has invested significantly in data analytics over the last five years, focusing on 
mathematics for data analysis, machine learning, and AI methods to identify patterns in data and 
build predictive models from those data. DOE also is investing in the necessary software tools 
and infrastructute to manage extreme data flows from large-scale instruments shared by 
international scientists, such as the Large Hadron Collider (LHC) in Switzerland. DOE's Fermi 
National Accelerator Laboratory hosts a Tier-! computing center that processes data from LHC 
experiments. Other large-scale, collaborative instruments yielding extreme data flows include 
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light sources such as the Advanced Photon Source (APS) at Argonne National Laboratory and 
detectors from telescopes and microscopes. 
DOE also is investing in the design of computer systems optimized to process data and to run 
simulations. The Aurora 21 system-which Argonne will deploy in 2021 as the first U.S. 
exascale system-is explicitly designed to support exascale simulations, the largest data 
analytics problems, and deep learning for DOE science and engineering missions. It is important 
for future DOE computing facilities to embrace the convergence of simulation, data analysis, and 
machine learning, and for DOE to invest in both facilities and research to gain maximum insights 
from the data collected. With the deployment of exascale computers, DOE will have some of the 
world's most powerful data-analysis engines, desi1,'11ed to keep pace with the volume of data 
scientists are creating. 

3. How should the need to accelerate big data analytics and integrate private sector 
approaches influence the design requirements and success metrics of upcoming 
DOE computing acquisitions? 

DOE computer scientists are well aware of data analysis approaches developed by the private 
sector-and in some cases, they have contributed to that technology. Insights from private-sector 
systems and similar government-developed systems have influenced the design of DOE's 
preexascale systems (Summit and Sierra), as well as DOE exascale systems that are currently 
under development (Aurora 21, Frontier, and El Capitan). The need to address simulation, data 
analytics, and machine learning has resulted in machine architectures and software environments 
that combine the best of scientific computing and big data analysis. With supercomputing 
vendors that understand this need for convergence, the United States is the undisputed thought 
leader in next-generation computing systems. 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Bobby Kasthuri, Researcher, Argonne National Laboratory; Assistant Professor, The 
University of Chicago 

Questions submitted by Rep. Randy Hultgren, House Committee on Science, Space, and 
Technology 

1. Clearly AI is important to the future of science, but do you feel that our nation's 
computing infrastructure is equipped with the right kind of computers to enable 
researchers across our nation to develop this capability? 

Pre-exascale and exascale systems under development at U.S. Department of Energy (DOE) 
laboratories will be the world's most powerful for artificial intelligence (AI). National laboratory 
and academic researchers can access these systems through successful peer-review processes the 
laboratories have used for more than a decade. However, although DOE is establishing the right 
types of systems in its national laboratories, U.S. academic groups may not have sufficient 
capacity to teach next-generation researchers how to apply advanced AI methods to science. 
Consequently, it may make sense for DOE to work with the National Science Foundation (NSF) 
or others to broaden academic access to leading-edge AI systems via testbeds and facilities 
housed at the national laboratories. When used in the 1980s and 1990s, this approach exposed 
academics to the earliest parallel computing systems and grew a research community around 
parallel processing. Reviving the approach with a focus on AI would complement the resources 
available to universities via public computing clouds. 

2. How are we including academia and other research institutions with work at DOE? 

The DOE Office of Science supports broad research programs at universities; depending on the 
DOE program office, academia-based research can constitute as much as 30% of the allocated 
funding. University-supported researchers have full access to the DOE facilities they need to 
carry out their work. In addition, DOE gives academic researchers access to facilities at DOE 
laboratories independent of their funding sources. Many users of DOE supercomputers and light 
sources are academics supported via NSF, National Institutes of Health, or U.S. Department of 
Defense research programs. DOE also provides facility and technology access to researchers 
from non-profit institutes and industrial organizations. 

3. Do you believe we have an AI infrastructure gap and what would a roadmap to 
getting where we need look like? 

There is an emerging need for the United States to enable wider access to the types of specialized 
artificial intelligence (AI) computers being developed by startups. Dozens of companies are 
investing a total of more than $3 billion to push performance boundaries tor AI-based 
applications. Although DOE is involved with some of these projects, overall the United States 
has been more successful in research and development for these systems than in deploying them 
for research use. 
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Although the United States and China currently have roughly equal access to AI infrastructure, 
China is making serious investments. Japan currently lags compared to the United States, but it 
has recently started building AI supercomputers to provide access for researchers in academia 
and industry. In the United States, most AI infrastructure is operated by companies such as 
Google, Amazon, and Microsoft, whose primary goals do not include making their leading-edge 
capabilities available to research programs. 

The United States could consider deploying at DOE national laboratories AI access infrastructure 
that offers leading-edge technologies and is available to U.S. universities and smaller industry. 
As mentioned before, the United States successfully followed this strategy in the 1980s and 
1990s to provide academics necessary access to emerging parallel computers. 
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Responses by Dr. Katherine Yelick 

HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Katherine Y elick, Associate Laboratory Director for Computing Sciences, Lawrence 
Berkeley National Laboratory; Professor, The University of California, Berkeley 

Questions submitted by Rep. Gary Palmer. House Committee on Science. Space. and 
Technology 

I. In addition to serving here on the Energy Subcommittee, I also serve on the House 
Budget Committee where I am familiar with looking at government spending from a 
cost-benefit viewpoint. The President's budget request for FY 2019 included $899 
million for the Advanced Scientific Computing Research Program, so I am 
wondering if you could speak a little more to the benefits that you see coming 
directly from that investment? In your opinion, what areas/technologies are giving 
us the best return on investment? 

The Advanced Scientific Computing Research (ASCR) Program is the lead agency for high 
perfonnance computing (HPC) in the nation, with the top HPC facilities and a research program 
in applied mathematics, computer science, and its signature SciDAC Partnerhip program to 
develop HPC applications in collaboration with other science communities. ASCR' s ESnet 
network connects all the sites together, allowing data to stream from one user facility to another, 
providing both a unique capability for scientists and greater overall efficiency in science, since 
one can use supercomputers to analyze data from major experimental facilities. ASCR's HPC 
facilities are a tremendous resource to the national user community, with the Leadership 
Computing Facilities supporting some of the largest national computational challenges, and 
NERSC supporting the broader DOE user community in high performance computing and data 
analysis. NERSC has a distinct role and ROI, with over 7000 users of which 60% (over 4000) 
are students, postdoctoral researchers, and faculty from universities. These facilities provide 
computing and data services by installing ready-to-use application software in a broad range of 
research areas, in addition to training and support for those who want to develop their own 
applications. Finally, the Exascale Computing Project (ECP) is a novel construct that has 
marshaled efforts across the DOE complex to build applications and software for exascale 
systems, in addition to advanced technology investments in industry. ECP is leveraging basic 
research investments from the last decade, such as novel mathematical models fast parallel 
algorithms from computer science in order to solve problems that would otherwise have been 
impossible. 

The combination of these ASCR-funded activities is serving the national scientific community 
while also moving the nation forward in advanced hardware, software, and mathematical 
capabilities. Advanced high performance computing (HPC) is increasingly becoming an 
indispensable and foundational part technologies important in US industry. Today, advanced 
HPC is speeding the discovery of new materials for lighter yet stronger airplane wings and faster 
planes, of new chemistry for more efficient batteries, and of larger data analyses for more 
detailed understanding of extreme weather events and how to plan for and recover from them. 
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Because of advances in data-driven science funded by ASCR, HPC can now process huge 
amounts of data to discover interesting features and infer properties of complex scientific data 
adding powerful new tools in analysis and learning to established areas of HPC modeling and 
simulation. The amounts of data available to researchers are increasing exponentially and the 
United States' ability to understand and productively utilize the information relies on advanced 
computing capabilities and capacity from more powerful hardware to more sophisticated 
mathematical algorithms and more complex, speedier, and efficient software, memory, and 
networking systems. 

Advanced HPC is fundamental to securing the United States' world leadership in science, but it 
is also critical to advancing the nation's leadership in the production of information technology 
and products, from the intellectual property of microelectronics, software and advanced applied 
mathematics, to maintaining world leading market share in computing and communications 
devices and tools. New knowledge that drives transformational leaps in advanced high 
performance computing also pushes against the technological boundaries of personal computing 
devices, internet technologies and other consumer, computing based, products. 

2. We all know that China is a major competitor in the machine-learning! AI space. 
What would it mean for the United States if another country were to gain 
dominance in machine learning? 

It is imperative to U.S. scientific, innovation and economic wellbeing that our researchers, 
universities, institutions, industries and government maintain a world leadership position in the 
development and utilization of machine learning and AI. In the largest scientific problems, we 
are not trying to develop techniques that mimic human behavior, but instead augment human 
insight with the ability to analyze data sets at a scale and complexity that would be impossible 
for humans. The US still holds a lead in this area, but countries around the world have 
recognized the on the benefits that AI and machine learning bring to a very wide variety of 
scientific, national and commercial applications, and are investing heavily in these fields. 

Instead of focusing exclusively on AI and machine learning leadership, it is critical to ask how 
the federal government can work with universities, national labs and industry to support the 
whole ecosystem of high performance computing and meet the challenges of a beyond Moore's 
law world. From advanced hardware and high speed scientific networking, to world leading 
applied math capabilities, advanced memory systems, sophisticated software, and an educated 
and well-trained workforce in computing and computation, the entire ecosystem must be 
sustained. Adequately and wisely investing in the foundational pieces of the HPC ecosystem will 
drive advances, and leadership, in AI and machine learning. 

As widely reported a decade ago, China made a commitment to develop an indigenous high 
performance computing industry that would be able to compete toe to toe in international 
markets against the U.S., Europe and China- primarily the U.S. The Chinese approach has been 
broad and successful, and the country's HPC industry is now poised, and in some instances have 
begun, to harvest the fruits of their investments. In 2011, China claimed 61 out of the top 500 
supercomputing sites in the world -making it a distant second to the U.S., which had 255. 
Today, in the most recent issue of the HPC Top500 list, the U.S. claims only 124 systems, a new 
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low. Just six months ago, the US had 145 systems. Meanwhile, China improved its 
representation to 206 total systems, compared to 202 on the last list. 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Katherine Y elick, Associate Laboratory Director for Computing Sciences, Lawrence 
Berkeley National Laboratory; Professor, The University of California, Berkeley 

Questions submitted by Rep. Jacky Rosen, House Committee on Science, Space, and 
Technology 

As you all have discussed, scientists and companies continue to utilize big data analytics 
to better achieve research goals and improve industry needs. In Nevada, the Desert 
Research Institute- or DRI, the state's environmental research facility- uses extensive 
monitoring and modeling programs to analyze environmental and health data. For the 
past two years, DRI has been working with partners on the Healthy Nevada Project, 
one of the first community-based population health studies in the country. They are 
studying health, environmental, and socioeconomic data to better understand how these 
factors and genetics can help predict who may be at risk for certain diseases, allow for 
quicker diagnoses, and encourage the development of better treatments. 

1. In your view, is there a productive role that the Department of Energy can play in 
accelerating the development of technologies like those that the Healthy Nevada 
Project is using? 

Although not within its core mission, health research has and can benefit greatly from the 
expertise and unique scientific resources of the Department of Energy. The best-known example 
of this is the Department's role in sequencing the human genome. High performance computing 
capabilities and the ability to manage large scale scientific research challenges made the 
Department an ideal place to take on this huge challenge. Today, partnerships between the DOE 
and the NHI and Veterans Affairs arc working to apply unique DOE assets to critical health 
research into brain science and cancer. 

So, yes, there probably is a productive role for DOE to play in assisting the Healthy Nevada 
Project and other research programs like it. The question is how to do it. Stovepipes within the 
Congress and the Administration often serve as barriers to cross-agency collaboration. The 
biggest issues often being who pays. If however, the resources for the research are provided by 
external sources (foundations, companies, other state, regional, or local governments), the 
national laboratories have several different points of engagement possible to conduct research for 
non-DOE entities. Additionally, the DOE national scientific user facilities are free to use based 
on an external peer reviewed process that ranks research proposals based on the quality of the 
science and the appropriateness for the specific user facility. 
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2. How should we balance investments in DOE's computing facilities and advanced 
data analytics? Are we creating data faster than we can analyze it? 

In some cases, yes, DOE's (and other agencies') data generating tools and experiments, such as 
light sources, telescopes, sensors, accelerators, genome sequencers particle colliders, etc., are 
producing data faster than ever before. However, this data will produce new insights using 

advanced analysis techniques and systems optimized for data-intensive workloads. We 
understand the challenge and the Department has a plan in place to grow the nation's computing 
capabilities to handle massive data opportunities. However, the challenge is not two 

dimensional. It is not just about computing power and data production. It is about the entire 
HPC and scientific computing ecosystem. The data needs to move to the HPC facilities over high 
speed networks and analyzed with smarter algorithms, including machine learning techniques, 

and scalable parallel versions. More sophisticated and flexible software, memory and 
connectivity are required. Advanced scientific networking between the sources of data 

production and the HPC assets must be able to seamlessly and accurately move the scientific 
data. Because of this, it is critical that DOE's HPC budget remain balanced among the different 
foundational parts of the ecosystem. Without this balance, the U.S. will continually be playing 

catchup. 

3. How should the need to accelerate big data analytics and integrate private sector 
approaches influence the design requirements and success metrics of upcoming 
DOE computing acquisitions? 

DOE's computing and networking facilities have well-established processes for collecting 
scientific requirements from the user community and t~anslating them into system requirements 
for acquisitions. At the National Energy Research Scientific Computing Center (NERSC), for 
example, data analytics has been part of the workload for many years, and one part of the current 
Cori systems is tailored to the need of some data-intensive problems. NERSC used to run 
separate systems for data analysis, but having single integrated systems are more flexible and 
more cost effective. At the same time, the private sector, both large companies and small 
startups, are developing innovative hardware approaches for some of these problems, especially 
for deep learning algorithms. The DOE Labs would bring a wealth of expertise in algorithms 
and scalable software, as well as large, complex scientific data sets to aid in co-design of these 
systems. 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Katherine Y elick, Associate Laboratory Director for Computing Sciences, Lawrence 
Berkeley National Laboratory; Professor, The University of California, Berkeley 

Questions submitted by Rep. Randy Hultgren, House Committee on Science, Space, and 
Technology 

1, Clearly AI is important to the future of science, but do you feel that our nation's 
computing infrastructure is equipped with the right kind of computers to enable 
researchers across our nation to develop this capability? 

The Deep Learning approaches that have been successful in many AI problems require enormous 
computing resources and are dominated by dense matrix algorithms that run well on most 
computer architectures, but are especially efficient on Graphics Processing Units (GPUs). With 
Large GPU-based systems on the floor--such as the recently installed Summit system at ORNL 
and Sierra at LLNL, in addition to the older Titan system at ORNL--DOE is providing 
capabilities that are well matched to deep learning. The DOE systems have high-speed networks, 
which allow even large data sets and enable more scalable algorithmic approaches than on 
smaller systems or those with slower networks, as are common in commercial clouds. Indeed, 
the largest and fastest deep learning problems run to date have been on these DOE systems. Just 
a year ago the NERSC Cori system with its lightweight cores (not GPUs) produced the fastest 
deep learning demonstration used to classify scientific data, and a demonstration of one exaops 
will be reported at the upcoming Supercomputing (SC 18) conference by a team, lead by 
Berkeley Lab on the Summit system. (These "ops" used in AI problems are one quarter the 
power of our usual "flops" we talk about in HPC, so you can roughly think of this as a 250 
petaflop system.) Longer term, there are several companies and academic researchers looking at 
even better architectures for these problems, which may be able to solve problems faster or with 
less energy. The DOE Lab's close partnerships with many of these vendors, our experience 
pushing the envelope of new technologies, and the availability of enormous scientific data set 
and expertise can contribute to advances in hardware for machine learning. 

2. How are we including academia and other research institutions with work at DOE? 

Across the Office of Science, universities receive substantial research funding, both a direct 
awards to universities and through subcontracts and partnerships with the DOE Labs. They also 
gain access to DOE user facilities, which enable research that would otherwise be impossible at 
most university campuses. With respect to computing, as noted above, over 4000 university 
users benefit from using NERSC, which includes scientific user support in addition to access to 
computing and data systems. ESnet impacts universities in multiple ways, peering with other 
networks to move scientific data between DOE facilities and the universities, and providing 
innovative services and architectures, such as the Science DMZ architecture that NSF adopted 
and funded at several universities in order to speed science data transfers. 
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Academic institutions are involved in some projects within the Exascale Computing Program 
(ECP) and they are directly funded by ASCR's base research program. However, funding for 
base computer science and applied math research has declined significantly over the past few 
years as the ECP project ramped up. The research program needs to be rebuilt to lay the 
foundation in ideas, research results, and in personnel for future mission needs within DOE. 
DOE needs to have longer-term, high risk research for the long-term health of the Labs and to 
attract the best talent, especially in HPC where there are so many other opportunities for 
computational experts entering the workforce. While ECP is serving an important role in the next 
few years, it should not replace basic research. University-funded researchers have been even 
more significantly impacted by reductions in the base research program than the Labs, which, of 
course, is a critical issue for current students and faculty, but has negatively impacted both the 
innovation and talent pipeline needed to address future DOE mission problems and 
computational/ data-intensive science more broadly. 

3. Do you believe we have an AI infrastructure gap and what would a roadmap to 
getting where we need look like? 

Ironically, most computer scientists have not used a large amount of computing time for their 
own research, unless they were working (as I have been) on HPC problems in partnerships with 
scientists from other disciplines. But the explosion of machine learning, and especially deep 
learning, in AI has suddenly created a demand for access to large computational resources by 
computer scientists. While DOE will need machine learning to addressing some of its mission 
problem, and all of the DOE HPC facilities are looking at way of supporting that workload, 
planned upgrades to these facilities will not serve the needs of this computer science community, 
many of whom are working on problems outside the DOE mission space. The National Science 
Foundation also provides HPC resources, but this has primarily focused on the physical and life 
sciences, not on computer science. Commercial cloud providers also offer computing services 
and even provide modest sized academic "grants" of cloud time, but costs can be prohibitive if 
university researchers are paying commercial prices and these systems do not provide the high 
performance computing at scale needed for some of the largest problems. As a result, academic 
computer scientists do not have access to the kind of resources (both data and computing) that 
are available to industry researchers. This has created a gap that is threatening the intellectual 
leadership of universities in the AI space. While there may be some differences in architectural 
designs, such as optimizations of hardware or software specific to deep learning, the real issue is 
simply lack of academic infrastructure for machine learning, because the need has grown so 
quickly and has not been met by existing facilities. DOE's expertise in running large facilities 
for the science community, including innovative computer systems, collecting user requirements, 
installing software, and providing scientific support, makes it well-positioned to provide some of 
the computing need to AI. 
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Responses by Dr. Matthew Nielsen 

HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Matthew Nielsen, Principal Scientist, Industrial Outcomes Optimization, GE Global 
Research 

Questions submitted by Rep. Gary Palmer. House Committee on Science. Space. and 
Technology 

1. In addition to serving here on the Energy Subcommittee, I also serve on the House 
Budget Committee where I am familiar with looking at government spending from a 
cost-benefit viewpoint. The President's budget request for FY 2019 included $899 
million for the Advanced Scientific Computing Research Program, so I am 
wondering if you could speak a little more to the benefits that you see coming 
directly from that investment? In your opinion, what areas/technologies are giving 
us the best return on investment? 

Three significant benefits to industry that the Advanced Scientific Computing Research Program 
(ASCR) delivers are (I) the ability to evaluate computational solutions to barrier problems 
beyond what can be feasibly tested internally, (2) collaboration with experts in computational 
methods to push beyond the state of the art and (3) access to leverage the ecosystem of 
software tools and applications to benefit from advances in employing computational 
solutions. The ASCR program offers access via competitive peer-reviewed grants to time on 
supercomputers with capabilities beyond any feasible investment from industry. As access to 
these grants has broadened to allow participation from industry, GE has competed aggressively 
through those programs to earn supercomputing time and access to the critically-valuable 
talent at the computing centers that comes with such a win. Harnessing the power of these 
facilities and the knowledge of the technical staff, GE has gained insight into scientific and 
engineering problems and solutions with impact on global competitiveness in advanced 
technology products ranging from power generation to jet propulsion to metal 3D printing to 
medical imaging. In fact, expertly employing computational methods is now fundamental in the 
modern practice of engineering design. 

ASCR · s leadership computing facilities assemble the investments, talents, skills and know ledge 
to: (a) advance technology, procure and operate the most powerful computers in the world 
(beyond the horizon pragmatic for industry to provide on its own) (b) develop the software to 
maximize the usefulness and broaden the applicability of leveraging these facilities for a 
multitude of problems critical to domestic interests and global competitiveness and (c) 
coordinate such efforts in exemplary programs such as the flagship Exascale Computing Project 
(ECP), for which GE presently Chairs the Industry Advisory Council. For example, the ECP 
includes initiatives to propel cutting edge capability in additive manufacturing, combustion 
machinery and cancer treatment. 

Further, newly-deployed systems such as Summit at the Oak Ridge Leadership Computing 
Facility recognize the emergent power of human+machine collaboration- applying the 
strengths of each as machine learning and scalable data analytics augment human perception, 
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cognition and comprehension to overcome challenges in ever-more volatile, uncertain, complex 
and ambiguous in science, medicine, engineering and economics. Recent govermnent support of 
quantum computing demonstrates commitment to longer-term impacts, and already quantum 
communication and cryptography are beginning to find commercial applicability. Quantum 
computing remains more distant in its readiness to be used on the very narrow set of problems 
to which it is known to be applicable. In those niche areas, quantum computing is truly 
transformative and there will be national consequences if the U.S. falls behind. However, the 
value of advanced-but-conventional computing programs such as ECP is established, significant 
and widely-applicable and should not be interpreted in any way as redundant to or inevitably 
replaced by quantum computing. 

2. We all know that China is a major competitor in the machine-learning! AI space. 
What would it mean for the United States if another country were to gain 
dominance in machine learning? 

The United States must become a leader in artificial intelligence to preserve our national 
security and maintain global peace. Any nation that gains artificial intelligence dominance over 
the United States has the option to defeat us across several theaters, including but not limited 
to: cyber, air, sea, ground, space, economic, biologic, and to destroy us from within through 
inciting social conflict. 

Our nation has an economy that depends on the internet, just as much as we depend on 
electricity, water, food and shelter. The cyber war is currently being waged, but we have not 
experienced a catastrophic cyber event that signals to the world that one country has superior 
cyber power. Machine Learning experts that have both created and witnessed the power of AI 
Systems that continuously learn and they understand the potential that artificial intelligence 
brings to cyber warfare. The United States needs to invest at the intersection of Artificial 
Intelligence and Cyber Security with the domain knowledge of our assets that compose our 
critical infrastructure that deliver power. water, food, transportation and healthcare within 
the context of our digital world. 

An upper hand in Artificial Intelligence is synonymous with an upper hand in autonomy. As 
warfare is waged with machines the smartest machines will have a formidable advantage. 
Machines that make immediate decisions and take immediate actions, even in situations where 
communications have been eliminated, will dominate machines with lesser intelligence. 
Machines that intelligently operate as highly coordinated fighting systems, sometimes called 
swarms, will surprise their enemies with emergent behaviors never witnessed. Any country 
that relies on Artificial Intelligence that relies on past examples to predict future events will be 
at an enormous disadvantage. The United States must continue to invest in Artificial 
Intelligence that integrates the domain expert (human) and the Machine Learning to move from 
extracting information from data to wisdom that enables actions. Brian Pierce, Deputy Director 
of DARPA's Information Innovation Office, has eloquently outlined a path forward in this 
regard. As machines interact with domain experts, creating a quid pro quo for each, the human 
experts' attention is directed to where the machine needs support, until we reach a point where 
the machine rarely needs support, and the machine will be able to make decisions and take 
actions when exposed to never observed situations and goals. Artificial Intelligence must be 
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created in combination with human domain experts. In fact, the combination of artificial 
intelligence and quantum computing is another area that may bring game-changing capabilities 
to a country with an upper hand. The United States must stay at the forefront of creating 
exponential technologies that combine multiple emerging technologies. 

In a digitally connected world and with the pervasiveness of social media and digital content, 
our foes can catalyze our self-destruction. Artificial Intelligence agents, armed with deep 
understanding of complexity theory, can create and distribute information that ignites internal 
battles and civil conflict. This is a subtle type of warfare that requires superior Artificial 
Intelligence to defend as compared the Artificial Intelligence needed to attack. 

In the commercial world, we see the use of Artificial Intelligence accelerating design cycles and 
creating revolutionary designs in industries that relied for decades on evolutionary designs. As 
commercial assets are deployed, artificial intelligence is integrating information and actions 
from inspection, maintenance, and repair, and thus transforming traditional assets into 
"immortal machines." These immortal machines improve their performance over time, adapting 
to the current need or mission. 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Matthew Nielsen, Principal Scientist, Industrial Outcomes Optimization, GE Global 
Research 

Questions submitted by Rep. Paul Tonko, House Committee on Science, Space, and Technology 

Dr. Matt Nielsen, thank you for your work and for representing New York's Capital 
Region. I could not be more proud of the incredible research and work GE is doing at their 
Global Research facility in Niskayuna, New York. They have proven themselves time and 
time again as global leaders in the field. 

Great technological advancements are also being made across New York's 20th District at 
RPI, SUNY Polytechnic Institute, the University of Albany, and at many other universities 
in our region. More and more, we are seeing data analytics and machine learning impact 
and improve countless industries and many aspects of our daily lives. 

At SUNY Poly's state-of-the-art facilities, researchers from IBM, along with research 
alliance partners Global Foundries and Samsung, created a computer chip with transistors 
that are 5 nanometers wide, the smallest in the world. A computer chip the size of a 
fingernail can hold up to 30 billion of these transistors, which will mean faster, more 
powerful computing. 

At UAibany, The Albany Visualization and Informatics Lab specializes in data science and 
regional planning. One of their areas of focus involves the collection of large amounts of 
data on traffic patterns as a function of time during the day and year. Using these data, 
researchers develop models, test the validity of the model data, and predict traffic patterns 
and their correlation with weather patterns to direct commercial and public traffic more 
efficiently and better plan the development of new city or business districts. 

Great strides are being made in this field within both the public and private sector. 
Continuing this trend will ensure safety and efficiency within all aspects of our lives. 

Dr. Nielsen, it is important that we are encouraging future generations to engage in science 
and engineering fields to ensure that the important work you do is carried on. 

1. Does GE do any work in these areas with local universities and their students? 

Yes, the most recent example was announced a few weeks ago by RPL Global Research is part 
of research team led by RPI that was awarded $1.4 million in project funding from Advanced 
Robotics for Manufacturing (ARM) to develop an advanced robotics solution in manufacturing 
that integrates sensors and automation technologies. The focus of the project is developing a 
mobile, or fixture-less robot-assisted platform that an operator could control and utilize in a 
manufacturing assembly process to improve productivity. Through the program, RPI students 
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will have the opportunity to directly interact with GE researchers and other industrial partners 
on the project. In addition to funding from ARM, the program has received matching funds from 
the New York State Empire State Development Division on Science, Technology and Innovation 
(NYSTAR). 

2. What is GE doing to ensure that the next generation of scientist and engineers are 
prepared to enter the workforce to address these big data issues? 

One of the best ways we have engaged future scientists and engineers is through government 
R&D programs that bring industry and academic partners. We often will have the opportunity 
to work directly with engineering students on various projects. One example is through our 
involvement in the National Network of Manufacturing Innovation Institutes. The Innovation 
Institute for Additive Manufacturing, America Makes, has a great mix of industry, academic and 
other stakeholders that are focused on advancing additive, or 3D printing technologies. 
Managing data securely and reliably is a key consideration when dealing with digital files of a 
product or part design being sent to a 3D printer to be manufactured. 

a. Does GE engage with K-12 Capital Region students to encourage their 
interest in these fields? 

The key is reaching kids at a very early age during their primary and secondary education, 
which has been the focus of several local programs and events in the Capital Region that GE 
hosts throughout the year. Highlights include: 

a. Science Day (4th grade students from three Capital Region schools different 
schools selected every year) at Global Research in Niskayuna. Entering its 29th 
year this fall, GE invites 4th grade students from six area schools to see and 
experience firsthand the amazing way science impacts our world through more than 
a dozen experiments. Different schools are selected each year. In the nearly three 
decades GE has hosted the event, nearly 12,000 students from across the Capital 
Region have participated in Science Day; 

b. GE Inspire Program with Schenectady High School- Inspire is a science and 
technology enrichment program at GE Global Research to expose intercity students 
to exciting cutting-edge technology that may inspire them to pursue a career in 
science or technology. The program is made up of three elements: technical 
concepts, non-technical concepts (communication skills), and a scientist mentor. 
During this 9- week program, students can learn about natural sciences, engineering 
and computer science. The Inspire program will enter its I Oth year this fall; 

c. GE Girls at RPI program- weeklong Summer STEM experience for local girls 
entering the eighth grade. The experience includes interactive and educational 
experiences in everything from wind turbine design and testing to robotics, 
chemistry, medical technologies and physiology and biomedical engineering. The 
program at RPI is one of several GE Girls programs that GE has supported across the 
nation; 
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d. Participating sponsor in the Niskayuna Central School District's annual 
Engineering Institute for Young Women, hosting interactive tours in robotics and 
other hands-on demonstrations at Global Research. This year was the 7th year we 
have been a sponsor of the Institute; and 

e. First Robotics, Math Counts, Science Bowl and Invention Convention 
competitions ... national competitions we sponsor and support locally in the Capital 
Region. 

In addition to these formal events, Global Research scientists and engineers individually mentor 
students and participate in school events on their own time throughout the year. 

Dr. Nielsen, in your testimony before the science committee on July 121h you discussed 
cyber-attacks and threats to power plants. This is important work. It is critical for our 
national security and our economy that such threats and attacks are stopped. You 
discussed GE's work on building the world's first "Industrial Immune System" for electric 
power plants that can detect and neutralize threats. 

3. Why is it so critical that we develop this type of "Industrial immune System"? 

In 2010 we witnessed a new era in cyber-attacks: Stuxnet. This attack was able to jump an air 
gap, get past informational and operational technology defenses, manipulate running control 
systems, and then execute a stealthy attack. This was the largest publicly documented attack 
and was focused on destroying industrial assets versus targeting the exfiltration of finance or 
personal information. Unfortunately, we are seeing an ever-increasing number of cyberattacks 
focused on industrial assets. What is clear, in the industrial space, is that we need to 
protect against adversarial nation states and well-organized hacker groups. This requires the 
continued research and development of more sophisticated defense technologies. The need is 
real and extremely critical, as the impact from a large scale cyber-attack focused on industrial 
assets could be devasting to both our citizens and economy. 

4. How effective is the "industrial immune system" in neutralizing threats? How fast 
does it work? 

While still in development, our goal is to detect and localize cyber-attacks with 99% accuracy. 
Once the industrial immune system has determined that a cyber-attack is present, we are 
targeting to provide neutralization for a majority of the system's critical functions, which have 
been compromised. Initial results provided by computer simulation studies and field data have 
indicated very good progress towards meeting these goals. The time requirements imposed on 
the industrial immune system are dictated by the dynamics of the system under protection. For 
our current focus on energy generation assets, the goal is to provide detection, localization and 
neutralization at the speed of the asset's contro I system, which is less than half a second. 
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5. What are the next steps on this project? What work still needs to be done in this 
area by industry and the research community? 

To date, we have developed the key algorithms and validated them using sophisticated 
computer simulations and extensive field data. The key next steps and required investment 
include: 
• Further research on neutralization for increased system resiliency during attacks; and 
• Scaling and refining of the technology to provide protection for assets outside of electrical 
power generation sector. 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Matthew Nielsen, Principal Scientist, Industrial Outcomes Optimization, GE Global 
Research 

Questions submitted by Rep. Jacky Rosen, House Committee on Science, Space, and 
Technology 

As you all have discussed, scientists and companies continue to utilize big data analytics to 
better achieve research goals and improve industry needs. In Nevada, the Desert Research 
Institute- or DRI, the state's environmental research facility uses extensive monitoring 
and modeling programs to analyze environmental and health data. For the past two years, 
DRI has been working with partners on the Healthy Nevada Project, one of the first 
community-based population health studies in the country. They are studying health, 
environmental, and socioeconomic data to better understand how these factors and genetics 
can help predict who may be at risk for certain diseases, allow for quicker diagnoses, and 
encourage the development of better treatments. 

1. In your view, is there a productive role that the Department of Energy can play in 
accelerating the development of technologies like those that the Healthy Nevada 
Project is using? 

Yes, DOE's high end computer processing capabilities will likely enable much faster analysis of 
the complex genomic, environmental and health data being collected in the Healthy Nevada 
Project. Their experience in big data modeling and analytics will also likely be complementary 
to standard statistical approaches. In principle, this means that answers, conclusions and 
recommendations should be arrived at more quickly over the course of the project, assuming 
sample size is sufficient and the correct data has been collected. 

2. How should we balance investments in DOE's computing facilities and advanced 
data analytics? Are we creating data faster than we can analyze it? 

The DOE delivers essential investment in advancing computational modeling and simulation, 
whereas investments from the commercial sector in scalable data analytics and machine 
learning remain comparatively robust. The growth of data is inevitably and inextricably 
entwined with the growth in the capabilities of digital technologies. It is quite true that the 
persistent acceleration in the world's capture and creation of data presents many challenges. 
These include the data must be stored cost-effectively, indexed to be usefully referenced and 
protected from unauthorized access or tampering. We can confidently argue it is also already 
true that without the assistance of computers such tasks would be impossible and people would 
be blind to the insights collected from these sensors, scientific instruments and computational 
models. Recognition of the commercial value in data has led to the success of some oftoday's 
most influential companies. To tame vast data, these companies have invested in developing 
scalable analytics, machine learning and data storage technologies now leveraged not only 
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commercially, but also in science and engineering. Symbiotically, the advanced computing 
hardware in our Leadership Computing Facilities can also very effectively leverage scalable 
analytics, machine learning and storage technologies in conjunction with their time-proven 
capabilities in modeling and simulation. Modeling and simulation software and underlying 
software upon which it relies such a~ mathematical libraries, optimized data structures and 
resource schedulers receives far more modest investment from commercial entities, however. 
Therefore, from the perspective of a user of both the computational methods and data analytics 
ecosystems, government emphasis on advancing the state of the art in modeling and simulation 
- and its ability to then exploit the commercial advances in scalable analytics and machine 
learning would drive greater value in the combined ecosystem. 

3. How should the need to accelerate big data analytics and integrate private sector 
approaches influence the design requirements and success metrics of upcoming 
DOE computing acquisitions? 

DOE computing acquisitions should consider the complementary strengths in combining 
traditional physical modeling and simulation with scalable data analytics and machine learning 
methods. More powerful hardware and software will enable collection and creation of 
evermore complex and rich data. As we grow the scale, fidelity and multi-disciplinary nature of 
computational models, we will also greatly increase the synthetic data output from simulation 
of solid and fluid mechanics, thermodynamics, biochemistry, electromagnetics and other 
systems of study. A great variety of data already exceed the abilities of the human mind to 
comprehend. Computational tools will play an increasingly critical role to augment human 
perception and cognition through scalable analytics, machine perception and machine learning 
to improve the composition of highly-complex models and comprehension of their results. In 
tum, we can also employ modeling to improve both machine learning and data analytics by 
bounding results within the formalizations learned over the history of study of our scientific 
disciplines. In upcoming DOE computing acquisitions, and consistent with the CORAL 
procurement that resulted in the Summit machine at the Oak Ridge Leadership Computing 
Facility, recognizing these synergies between scalable analytics, machine learning and modeling 
and simulation in the requirements and success metrics will ensure the systems and the 
software will provide the most powerful methods as the state of the art of science and 
engineering advances through the collaboration of the human mind with the capabilities of 
computational methods and architectures. 
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Responses by Dr. Anthony Rollett 

HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Anthony Rollett, U.S. Steel Professor of Materials Science and Engineering, Carnegie 
Mellon University 

Questions submitted by Rep. Gary Palmer. House Committee on Science, Space, and 
Teclmology 

1. In addition to serving here on the Energy Subcommittee, I also serve on the House 
Budget Committee where I am familiar with looking at government spending from a 
cost-benefit viewpoint. The President's budget request for FY 2019 included $899 
million for the Advanced Scientific Computing Research Program, so I am 
wondering if you could speak a little more to the benefits that you see coming 
directly from that investment? In your opinion, what areas/technologies are giving 
ns the best return on investment? 

Thank you for this question and for Congressional support for increased investtnent in this vital 
program. This increased funding supports a seamless web of capabilities all central to advancing 
the application of machine learning and artificial intelligence to manufacturing. It supports the 
supercomputing capabilities that support both material characterization research and the 
development and application of algorithms for real time analytics for materials and 
manufacturing process innovations. The investtnents, in both exascale computing and in 
developments in areas such as Quantum Computing, all contribute to U.S. leadership in this new 
frontier of manufacturing research and innovation. 

A measure of return should clearly be evident in the straight line that may be drawn from these 
investtnents and the operation of associated user facilities to specific new breakthroughs in 
manufacturing related innovations in areas such as longer-lasting industrial components, new 
materials, more effective coatings, and improved data management and analytic capabilities. 

I believe a critical need for the future will be to build even stronger linkages between high 
performance computing (HPC) and applications of machine learning and AI for manufacturing. 
As I noted in the hearing, we are at the early stages of this new paradigm in manufacturing 
research. Currently, our work is still largely utilizing algorithms developed for signal processing 
and information teclmology applications. Efforts to support focused development of machine 
learning and data analytics capabilities for advanced manufacturing will enhance the ROI in our 
manufacturing sectors from HPC programs. 

In addition, opportunities for greater collaboration between materials scientists and computer 
scientists within HPC programs, including the potential for interdisciplinary center scale efforts, 
would increase the return on high performance computing investments for advanced 
manufacturing. 
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A second key strategy, and one that both the DOE labs and universities are embracing, is to 
aggressively develop and implement initiatives that engage small manufacturers and 
manufacturing related entrepreneurs in this research area, including targeted efforts to increase 
access to HPC facilities and interaction with lab and academic researchers. 

2. We all know that China is a major competitor in the machine-learning! AI space. 
What would it mean for the United States if another country were to gain 
dominance in machine learning? 

Thank you for the opportunity to comment on this vital issue. I approach this question not as an 
economist trained to assess specific economic impacts or outcomes but as a materials scientist 
and engineer who has spent much of his career in and around the workers, companies and 
communities that have been impacted by technological and international dynamics. I am 
confident that I speak for many of my research colleagues when I state that a key factor 
motivating our work has been the dream of advancing fundamentally new technologies that can 
change the dominant paradigm of the last several decades which has seen low cost labor in other 
nations reduce manufacturing opportunities for companies and workers in particular products 
and sectors. 

The applications of machine learning and AI to manufacturing have the potential to accelerate 
entirely new approaches to manufacturing. They can particularly enhance applications such as 
additive manufacturing, which at scale could enable the cost effective production of radically 
new customizable, high value products that combine new materials as well as digital capabilities. 
Additive manufacturing is, by its very nature, a multiscale scientific challenge for developing the 
predictive capability that will allow engineers to take full advantage of these new technologies. It 
is already clear, for example, that co-design "is essential, which means that part design must be 
done hand-in-hand with the design of the additive manufacturing process. The machine learning 
and AI applications are also central to the potential to integrate new production processes like 
additive manufacturing with robotics. These are the types of breakthroughs that we expect will 
facilitate new globally competitive manufacturing opportunities in the U.S. 

Again, while I cannot project specific economic impacts or outcome, it would seem that as our 
workers, businesses and communities have endured the impacts of low cost competition from 
other nations in the past, it would be particularly unfortunate were we as a nation to lose 
leadership in these emerging high value manufacturing innovations. 

There are also likely specific ramifications in the area of national security and defense should we 
lose leadership in these frontier innovations. Machine Learning and Artificial Intelligence are 
key enabling technologies for developing manufacturing breakthroughs that can shorten the 
defense supply chain and facilitate "in theater" production that can increase our warfighters' 
ability to flexibly respond to rapidly evolving threats from state and non-state actors. A balanced 
strategy for investment in the application of these technologies to manufacturing, which as I 
noted in my remarks we are only in the early stages of undertaking, will clearly support both 
sustained U.S. industrial and defense competitiveness. 
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3. In your testimony you say that the importance of cybersecnrity in manufacturing is 
not well understood. Can you give us some examples of potential negative 
consequences resulting from cyber-attacks on manufacturing operations? What 
kinds of steps are being taken to stay ahead of the curve on these attacks? 

Thank you for the opportunity to expand upon this point. In essence, the application of machine 
learning and artificial intelligence to advanced manufacturing will expand the "attack surface," 
the segment of our economy and production infrastructure vulnerable to cyber measures. 

Scaling these applications involves intensive sensing at virtually all stages in the manufacturing 
process to generate the data that enable the ability to optimize operations and facilitate new 
product developments. Data collection, exchange and analytics activities will need to be cyber 
enabled within plants and across the supply chain to realize the full potential of the power of 
these applications. A few examples of vulnerabilities include: theft of intellectual property by 
interception of build tiles; disruption of builds by altering the build process; sabotage of parts by 
non-inspectable changes in part design; and reverse engineering of process design and part 
design by unauthorized monitoring of 3D printers. 

This new manufacturing infrastructure is known as the industrial Internet of Things (loT). 
Embedding cybersecurity objectives into the design and production of this loT infrastructure will 
be vital. I know that the Science Committee has been a strong supporter of cybersecurity 
research-which now also includes the application of machine learning and artificial intelligence 
to cyber defense. In addition, the national manufacturing innovation institutes are examining 
opportunities to incorporate cybersecurity objectives in their missions to advance specific 
applications. The Department of Energy, in large part through research at national laboratories 
such as Idaho National Lab, has been focused on the security of sensor and computer control 
devices. While initially targeted to enhance protection of the grid, these investments can enhance 
the application of cybersecurity technologies to advanced manufacturing. 

Speaking as a materials scientist and engineer, I also would strongly encourage programs and 
research environments that foster collaboration across advanced manufacturing and 
cybersecurity disciplines. One effective strategy at Carnegie Mellon's cybersecurity research and 
education institute, CyLab, has been to create an environment that fosters dynamic interaction 
between "makers" and "breakers," i.e., direct collaboration between those researchers advancing 
new digital applications and products and those with knowledge of hacking and cyber-attack 
capabilities. These kinds of dynamic collaboration models will be important to bring a focus on 
cybersecurity into the heart of advanced manufacturing research. 
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HOUSE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY 

"Big Data Challenges and Advanced Computing Solutions" 

Dr. Anthony Rollett, U.S. Steel Professor of Materials Science and Engineering, Carnegie 
Mellon University 

Questions submitted by Rep. Jacky Rosen, House Committee on Science, Space, and 
Technology 

As you all have discussed, scientists and companies continue to utilize big data analytics to 
better achieve research goals and improve industry needs. In Nevada, the Desert Research 
Institute- or DRI, the state's environmental research facility- uses extensive monitoring 
and modeling programs to analyze environmental and health data. For the past two years, 
DRI has been working with partners on the Healthy Nevada Project, one of the first 
community-based population health studies in the country. They are studying health, 
environmental, and socioeconomic data to better understand how these factors and genetics 
can help predict who may be at risk for certain diseases, allow for quicker diagnoses, and 
encourage the development of better treatments. 

1. In your view, is there a productive role that the Department of Energy can play in 
accelerating the development of technologies like those that the Healthy Nevada 
Project is using? 

While health and environmental research is not my field, I commend the creative and innovative 
application of data analytics and machine learning that is being undertaken by the Desert 
Research Institute. This capacity for machine learning to have a transformative impact in the 
very understanding of fundamental issues is what I and my colleagues in materials sciences 
experience in manufacturing. 

It also strikes me as the kind of innovative compelling application that can attract and encourage 
students to consider education and careers in computational fields and areas of study---a vital 
need for our nation. 

Additionally, I would expect the DRI, as an educational institution, to be interested in 
participating in the many opportunities for scientific research offered by the DOE. 

This effort seems very similar to an initiative I noted in my testimony, the partnership between 
DOE and the Veterans Administration to apply AI and DOE's high performance computing 
capabilities to the health challenges of Veterans. As with DRI's efforts, this initiative is targeting 
opportunities to apply DOE's resources and growing AI capabilities to high impact health related 
challenges. 
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2. How should we balance investments in DOE's computing facilities and advanced 
data analytics? Are we creating data faster than we can analyze it? 

Thank you. This question in part speaks directly to a key challenge for the future of machine 
learning and artificial intelligence applications for manufacturing: the need to balance and 
integrate the utilization of high performance computing with cloud computing. Both will be vital 
to advancing key applications to accelerate new material development and improvements in 
manufacturing processes made possible by digital engineering. DOE should lead the field in 
blending these fields, in collaboration with the NSF, DoD and NASA. Supporting and 
encouraging the creation of interdisciplinary teams that bring together domain experts in the 
fields of materials science with computer scientists, data analytics researchers, as well as social 
scientists in the fields of privacy and ethics, will be vital to develop new applications of machine 
learning and AI tools for manufacturing and should become a design feature of future DOE 
programs. 

This interdisciplinary approach will also be essential to address the challenges posed by the 
explosion of data referenced in your question. We are only at the beginning of the revolution in 
connecting physical systems in manufacturing and infrastructure to the digital world. As I noted 
in my testimony, machine learning is already proving vital for accelerating the conversion of 
data into useful information. Advances in raw computing speed and computable problem size are 
still crucial to many national needs in defense, transportation safety, climate change and many 
other areas. 

In addition to advances in computer science, data analytics, and stronger computational 
foundations in fields such as materials science, attention to the vital dynamics of 
human/computer interaction and teaming will be essential across the educational spectrum as 
jobs and a wide variety of daily interactions will increasingly seek to leverage digital intelligence 
to augment human creativity. 

3. How should the need to accelerate big data analytics and integrate private sector 
approaches influence the design requirements and success metrics of upcoming 
DOE computing acquisitions? 

While I have benefited enormously from the ability to utilize DOE user facilities, including 
advanced computing resources, I am not qualified to contribute specific recommendations on 
metrics relating to the design and acquisition of DOE computing capabilities. The inherent 
reference in this important question to the accelerating pace and scale of breakthroughs in private 
industry captures a dynamic that is shaping innovation across a number of fields and machine 
learning and AI in particular. 

I should take the opportunity to commend the manifold channels through which the Federal 
government seeks input from the scientific community, notably the Federal Advisory Committee 
system, of which the DOE makes excellent use. Research and educational initiatives that 
strongly encourage and directly foster closer collaboration among lab scientists, universities, 
industrial companies and emerging technology companies, which several DOE labs are pursuing, 
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will be increasingly valuable to address and capture the powerful benefits of this trend for 
agency and national research missions. 
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Æ 

According to the researchers, they've received more than 170,000 responses to its test, 
most of which poured in over the past week, following a BBC report on the project. 

MIT has explored other projects that incorporate the dark side of data and machine 
learning. In 2016, some of the same Norman researchers launched "Nightmare 
Machine," which used deep learning to transform faces from pictures or places to look 
like they're out of a horror film. The goal was to see if machines could learn to scare 
people. 

MIT has also explored data as an empathy tool. In 2017, researchers created an AI tool 
called Deep Empathy to help people better relate to disaster victims. It used technology 
to visually simulate what it would look like if that same disaster hit in your hometown. 


		Superintendent of Documents
	2020-01-06T18:02:26-0500
	US GPO, Washington, DC 20401
	Superintendent of Documents
	GPO attests that this document has not been altered since it was disseminated by GPO




